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Preface

This volume contains the papers presented at the 12th SDL Forum, Grimstad,
Norway.

The SDL Forum was first held in 1982, and then every two years from 1985.
Initially the Forum was concerned only with the Specification and Description
Language that was first standardized in the 1976 Orange Book of the Interna-
tional Telecommunication Union (ITU). Since then, many developments took
place and the language has undergone several changes.

However, the main underlying paradigm has survived, and it is the reason
for the success of the Specification and Description Language in many projects.
This paradigm is based on the following important principles of distributed ap-
plications:

Communication: large systems tend to be described using smaller parts that
communicate with each other;

State: the systems are described on the basis of an explicit notion
of state;

State change: the behavior of the system is described in terms of (local)
changes of the state.

The original language is not the only representative for this kind of paradigm, so
the scope of the SDL Forum was extended quite soon after the first few events to
also include other ITU standardized languages of the same family, such as MSC,
ASN.1 and TTCN. This led to the current scope of System Design Languages
covering all stages of the development process including in particular SDL, MSC,
UML, ASN.1, eODL, TTCN, and URN. The focus is clearly on the advantages
to users, and how to get from these languages the same advantage given by the
ITU Specification and Description Language: code generation from high-level
specifications.

Not only have the languages and the scope of the SDL Forum evolved, but
for the first time the Programme Committee for SDL2005 decided to have short
papers as well as the normal full papers with a strong scientific background
for full presentation and publication. The rationale is that the SDL Forum is
targeted at a mixture of participants from research to industrial engineering
backgrounds, and the inclusion of the short papers allows more issues to be
presented and discussed while still maintaining normal conference standards for
full papers. The short papers are of essentially three kinds:

Application reports. The SDL Forum has a tradition of publishing applica-
tion papers, and users need such reports to benefit from the experience of
other users, in particular where the reports contain quantitative results on
cost effectiveness. Typically such reports do not contain advances in tech-
niques or technology that justify presentation as full papers.
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Tool reports. Similarly, reports on new tools or new releases of tools are of
interest, without requiring the paper to describe a major advance – though
it may be an advance in use or technology for the particular tool.

Position papers. These are papers that raise legitimate issues that need dis-
cussion, and the paper is a contribution to the discussion but from its content
it could not be considered on the same basis as a fully investigated research
paper.

No doubt the concept of short papers will be further developed for future events.
One important facet of the SDL Forum is the concentration on real-world

examples mentioned above, which is also present in the SDL design contest:
following a ‘tradition’ started in 2002, the 12th SDL Forum hosted an SDL
design competition sponsored by SAFIRE SDL with cash prizes for the winning
designs.1

As editors of this volume, we have read through all the papers and are pleased
with the interesting and varied selection taken by the Programme Committee.
You will find all aspects of System Design Languages covered in this volume,
ranging from state-of-the-art research results to modern application examples.

April 2005 Andreas Prinz and Rick Reed

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that in addition to run-
ning the SDL Forum:

– runs the SAM (SDL and MSC) workshop every 2 years between SDL Forum
years;

– is a body recognized by ITU-T as co-developing the Z.100 to Z.109 and Z.120
to Z.129 standards;

– promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see www.sdl-forum.org.

1 The descriptions of the winning entries are to be found at the SOLINET web pages.
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ULF-Ware – An Open Framework for Integrated
Tools for ITU-T Languages

Joachim Fischer, Andreas Kunert, Michael Piefel,
and Markus Scheidgen

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{fischer, kunert, piefel, scheidge}@informatik.hu-berlin.de

Abstract. Model driven engineering is a popular attempt to deal with
the complexity of modern software systems. For the telecommunication
sector a model driven approach means that you have to handle several
ITU-T modelling languages in a single process to cover all aspects of
telecommunication system development. Unfortunately, this is a difficult
task, because the ITU-T languages are hard to use together. That is why
the ITU-T started the Unified Language Family (ULF) initiative with
the goal to unify the ITU-T language definitions and allow an easier
alignment and integrated use of these languages.

We present a tooling framework for those ULF languages: ULF-ware.
Our framework uses metamodelling and a shared use of common lan-
guage concepts for a tight language integration. Around these language
models it incorporates a set of tools to cover the various responsibilities
of development environments such as program parsing, model checking,
model transformation and code generation.

This paper shows work in progress. We demonstrate our ideas on a
tool chain for a subset of SDL. But the overall goal is an open framework
that is extendable with other languages, even beyond ULF, and with
tools for other software engineering tasks such as model simulation or
software deployment.

1 Introduction

Over the past decades the ITU-T developed a series of modelling languages;
each to cover a special aspect of telecommunication system specification. These
languages are called: eODL – used for high-level component description; SDL [1]
and MSC – to define different approaches to behaviour description and mod-
elling; ASN.1 – to define data; and TTCN – to write test cases. So there is
virtually a modelling technique for every need, but in reality this is meaningless
if these languages cannot be used together.

Different methodologies used in language development and definition make it
hard to align and relate these languages with each other, so that integration is
not trivial – it is barely possible. Of course, this is not news, and various calls for
integration have been made. The ITU-T proposed the idea of a Unified Language

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Family (ULF): a consistent, uniform foundation for all ITU-T languages, but
what is the method of choice to produce this foundation?

Two rivals have emerged: the field-tested and well-founded context free gram-
mars, versus the new (incarnation of an old idea) metamodelling that has proven
itself by building the base for ULF’s “antagonist” UML [2]. Omitting all political
arguments, metamodelling seems the more promising, and therefore scientifically
more interesting approach. This paper proposes an approach to language tool de-
velopment that uses metamodelling that is named after its overall goal: ULF-Ware.

ULF-Ware concerns utilizing metamodelling’s potential for: faster tool and lan-
guage development cycles, reuse of language concepts, and language integration.
The metamodelling method gives us two advantages: first, you can define the ab-
stract syntax of many languages as a combined model; second, it allows the various
tools that are needed to use a language properly to be developed separately.

The first point is founded on the independence from concrete notation and
metamodelling’s ability to form reusable object-oriented structures. It is the
independence from concrete syntax that allows modelling of language concepts
abstractly, independent from syntax details. It is object-orientation that allows
reuse and specialization of the common, abstract concepts in concrete languages.
In these ways the separate ULF languages can become the ULFamily.

The second point is based on metamodels that are data models specifying
(and can even standardizing) all the interfaces needed between different language
tools. The use of abstract, coherent concepts in the metamodel further loosens
the coupling between concept implementations and enables reuse.

With ULF-Ware we propose a metamodel-based, extendable framework for
the implementation of ULF in the spirit of the OMG’s MDA [3]. Section 2
explains the overall idea and philosophy of ULF-Ware, and we introduce a first
piece of ULF-Ware that we are implementing right now – an SDL/UML compiler
tool chain. In section 3 we present our current work in progress; this section
gives interesting insights into the various aspects of metamodel-based compiler
construction. The concluding section discusses the future of ULF.

2 ULF-Ware

The label ULF-Ware denotes all our tools around the Unified Language Family.
We constituted all ULF-Ware components around a conceptual model based
architecture: the ULF-Ware philosophy. We have begun to implement combined
SDL and UML compiler tools. These first ULF-Ware pieces have to prove the
applicability of the ULF-Ware philosophy.

2.1 Philosophy Behind ULF-Ware

ULF-Ware uses a centralized architecture; it has orbits placed around a core.
Figure 1 gives an overview on ULF-Ware.
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Fig. 1. An Overview of the ULF-Ware

tation; the core also facilitates functionality for model exchange, and therefore
connects the various language tools. It offers all the functionality needed to in-
tegrate the orbiting tools. It can be understood as a provider for all common
functionality and shared data that the language tools need. We realize the core
by using a MOF-compliant repository, where MOF (Model Object Facility) is
the standardized metamodelling architecture of the OMG [4].

The orbits around the core use, import and modify the models in the core;
they use the core’s operational interface. The distinct orbits act independently
of each other, except that their behaviour is based on the shared data provided
by the core repository. Because all orbits are independent of each other, the
architecture is not fixed to the initial given orbits and is easily extensible.

If we step back from this structural viewpoint and look at core and orbits in
terms of languages, we see the core handles abstract syntax and the orbits handle
semantics, where the concrete notations are considered a part of semantics.

The core handles the metamodels and provides a repository for actual lan-
guage instances (specifications or programs). The language instances are realized
by the extent concept. An extent is a conceptual space, where the lifecycle of
model elements takes place. An extent is automatically generated from the meta-
model for which it provides an instance.

The orbits add meaning to the abstract syntax stored in the core. Exam-
ples for those semantics are: static semantics – the check of models for static

The core’s responsibility is to handle all models: these are M1-models such
as specifications and programs as well as M2-metamodels, the metamodels. It is
a model-centered architecture. It is responsible for model storage and represen-
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Fig. 2. The philosophy of the distinct ULF-Ware orbits

correctness; model transformation – as a possible representation of dynamic
semantics; code generation – the question of how a model can be represented
by implementation code; textual and graphical representations – which relate
graphical or textual tokens to abstract model entities. There are many other
possible semantics, such as simulation or deployment.

Figure 2 provides a closer view of the ULF-Ware philosophy. The core is
a realization of a 4-layered metamodelling architecture: The models of every
layer are described by a more abstract (more ‘meta’ ) model in the layer above.
An example: the M1-layer represents SDL specifications; the M2-layer contains
the language description, the SDL metamodel; and the third layer defines the
language used to write metamodels: for a MOF-repository this is the MOF-
model.1

The semantics are realized by tools. In the first development state these might
be hand-written tools that depend on the languages that they are written for.
This dependency shows itself in the fact that the tools rely on the metamodel,
they rely on the syntax. Tools can express semantics by modifying, creating and
using models in the repository – they process models.

An SDL model checker, for example, is a tool that implements rules such
as: every agent of process kind must only contain other processes. Such a rule
depends on the SDL metamodel, because uses the metamodel elements agent,

1 Please refer to [5] for an introduction into metamodelling architectures.
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agent-kind, process, containment. The model checker applies this rule to SDL
metamodel instances: that is, to SDL specifications.

Another example is model transformation. A transformer simply implements
rules for metamodel entities such as: every agent can be realized with a Java
class. It depends on the metamodels for SDL and Java; it uses the elements
agent (SDL) and class (Java). The transformer uses SDL instances; it reads
SDL specifications. Based on this model data, it fills a Java extent; it successively
creates all Java elements required according to the transformation rules.

Both semantic orbits depend on the same language model (SDL), and they
both access the same language instance (the SDL specification). They share the
functionality of modifying SDL extents and they exchange SDL models. The
orbits are connected through the core. In the context of a compiler tool chain,
the model checker proves a model’s correctness, the checked model is passed on
and is used by the transformer as the model transformation source.

Fig. 3. Realization of an ULF-Ware orbit with a Meta-tool

Beside the hand-written-tools approach a more sophisticated realization of
semantic orbits exists. We call those tools meta-tools (figure 3). Using meta-
tools, we detach the language-dependent part of a semantics implementation.
As an example, compare two model checkers for two different languages: they
basically do the same thing; they apply static semantic rules to models. The
only difference and the only language dependency lays in the rules.

Thus meta-tools take semantic descriptions as input, and they realize the
described semantics by creating a generated tool. For example, such a meta-
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Fig. 4. The Compiler Architecture

tool might take a set of static semantic rules from a file of specified format and
generate a checker from these rules. This checker can then instantly be applied.
An actually existing example are OCL implementations: programs that allow
you to write rules for arbitrary metamodels and allow application of these rules
to instances of these metamodels.

2.2 Utilizing the ULF-Ware Philosophy – An SDL/UML Compiler

Around the previously described, more philosophical, conceptual ideas we im-
plement actual language tools. Our first goal is a compiler tool chain for an
integrated SDL/UML language. These tools will translate the models into Java
or C++ code and finally allow the execution of the generated code in different
run-time environments.

Figure 4 shows the compiler’s architecture: The core entities (extents for the
various languages – the syntax) and the different semantic descriptions that are
used to build these tools, as well as the model flow between them. According to
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the ULF-Ware philosophy, the four boxes represent the semantic orbits syntax
analysis, semantic analysis, transformation and code generation.

2.3 What We Gain

The overall ULF idea is to unify the definition of languages. We use MOF meta-
modelling to describe the syntax of SDL and UML with the same method. We
use this unified definition to relate and align those languages with each other.
This unified definition, a common metamodel of descriptions for common mod-
elling concepts, is an evolving product. We hope that it will be further filled with
concepts contributed from the other ULF languages.

In addition to the reuse of shared abstract syntax (common metamodel), we
hope that we can utilize further reuse in the tools and descriptions that describe
semantics. The idea is that when a common concept is shared, then the semantics
depending on this concept are shared as well.

3 Realization

We begin by implementing a compiler for a very simple language, and we plan
to successively extend this language. This course of action allows us to focus on
the development of methods and techniques without the hassle of very complex
languages. The language SDL- is a small subset of SDL-2000; it is a small feature
set that allows the specification of executable systems. The language is barely
usable in real applications, and its only purpose is to give us a research play-
ground. The language is described using an simplified version of the SDL-2000
abstract syntax grammar.

We used the technique described in [6] to develop a metamodel for SDL-
based on its grammar. It is part of the technique used to derive and use a set of
common concepts. With this metamodel and the corresponding repository, the
SDL- compiler core is established. It is planned to successively extend the defi-
nition of SDL- (and the used metamodel) with other concepts of the SDL-2000
standard. Later on UML will be integrated, sharing the same concepts and im-
plementations that were written for SDL. This concrete ULF-Ware is planned
as an evolving product.

3.1 Common Concepts in the Metamodel Space

Common concepts are modelled with abstract MOF classes, which are reused
and specialized in different concrete language definitions. Thus the definitions of
the various languages are simple specializations of a common metamodel. Due
to the shared core, all languages use the same common concepts. If you want
to learn more about the idea of common concepts, refer to [7]; the publications
[8, 9] are standard material for the object-oriented method and terminology.

There are several ways to obtain those common concepts: There are well-
known concepts from different domains such as the object-oriented paradigm or
state automata; there are the results of decomposing the concepts of existing
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languages into smaller, more abstract and potentially common concepts; and it
possible to directly integrate languages and compare related concepts.

Common concepts blur the boundaries between the modelled languages; this
is clearly a positive point. There are two important properties that we would
like to emphasize: a common concept is polymorphic, and represents concrete
concepts in (different) languages, and a common concept relates concrete con-
cepts in (different) languages. Where the second simply helps to align languages
to each other and helps to integrate languages, the first enables reuse of imple-
mentations for languages. A transformation or a static condition can be built at
a more abstract level, for a polymorphic concept class. Then it can be reused for
concrete concepts that act in place of the polymorphic concept.

We understand meta-models as a collection of packages with well-defined
relations. They describe language concepts on different abstraction levels, with
different levels of detail, and with a maximum of reuse between the distinct
packages. This is the same method that is used to define the UML, where the
different diagram sorts (each of them is a language of its own) are described by
one large model that consists of a diversity of packages and is commonly known
as the UML meta-model.

In our example, SDL, UML and even Java as well as C++ use the same
basis. Even though the languages are melded together at an abstract level, it
does not mean that the individual languages get lost. When you imagine the
model as a tree-like abstraction hierarchy of language concepts, then the leaves
of that hierarchy represent the concrete concepts, and these concrete features of
one language can be clearly distinct from those of another language.

3.2 Tools for Static Language Aspects

Figure 5 shows the model flow from SDL specification until the model is passed
for transformation.

The first tool in the chain is the parser. On the input side there is nothing
special; it takes a textual SDL specification as input and analyzes it with context
free grammar based techniques. We used JavaCC, a tool that allows lexical
analysis and syntactical analysis with LL-1 grammars.

The result of the syntax analysis is a filled repository. Therefore the parser
creates an extent of a special variant of the SDL metamodel, the SDL M2 WCSE.
The actions triggered by the various grammar rules then simply create proper
elements in that extent.

The SDL metamodel with the affix WCSE (with concrete syntax extensions)
is basically an extension to the SDL metamodel. The reason for this extra pack-
age is that the SDL model is rather abstract; it omits syntactical details that
cannot be resolved by the parser on its own. The idea is to use a model trans-
formation from a model that still contains syntax details, to a model in which
these details are resolved.

Most of these syntax details are string references (names, identifier) in the
specification text. Take a variable definition as example. A variable definition
assigns a type to a variable. In the textual syntax the type is specified, using an
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Fig. 5. Model flow from Specification to Model Transformation

identifier. Later in the SDL model this identifier is replaced with a link between
the variable element and the type element.

Figure 6 shows a few of these concrete syntax extensions and how they relate
to the given example. The syntax extensions contain two kinds of elements:
first, elements (such as ConcreteSyntaxExtension, StringReference, PathItem,
Qualifier, Identifier) that describe concepts exclusive to the concrete syntax;
second, the placeholder elements elements that are specializations of concepts
in the normal SDL metamodel. The instances of a placeholder are temporary
representatives of the elements that are yet to be resolved.

The variable example again: the parser reads a variable definition; it creates a
variable element (a specialization of TypedElement) in the repository; it does not
know which type it shall assign to the created variable, because the parser does
not know how to resolve the identifier that is used in the variable definition. Thus
the only thing the parser can do is create a PlaceHolder for NamedElement
and to save the identifier into that place holder.

The syntax extensions are partially hand-written; the place holder elements
could be generated automatically.

The analysis of static semantics is done in two steps. The first step is to
resolve all concrete elements from the wcse model and to create a real instance



10 J. Fischer et al.

Fig. 6. Concrete Syntax Extension Example

of the SDL metamodel. To do that, the wcse model is traversed for place holder
elements. If a place holder is recognized, the reference in it is resolved, and the
place holder is replaced by the referenced element.

After all concrete syntax elements are resolved, the SDL specification is a true
instance of the SDL metamodel (all WCSEs have been removed), and semantic
rules can be applied to check the model’s static correctness.

We use the Object Constraint Language [10] to implement semantic rules.
These OCL constraints are basically predicate logic expressions that use ele-
ments from the M2 level and are evaluated against M1 models. The example
OCL constraint in figure 7 expresses An SDL agent of system kind must not
be contained in another agent. The OCL constraints themselves are part of the
metamodel. They are attached to the model classes that they constrain. Evalu-
ation of static semantic rules means that for every class all attached constraints
are evaluated against every instance of this class.

3.3 Transformations and Code Generation

The repository is now filled with an SDL specification. For the tools further
down the chain, it is immaterial how the repository was filled. It could also have
been the working repository of a metamodel based, graphical SDL tool. While
tools like this do not exist for SDL, they may exist for other languages, such as
UML, where metamodel based tools are not rare.

In short, there are two easy steps. Step one is to perform a model transfor-
mation from the SDL M1 model that we use as input to the combined Java/C++

M1 model. Step two is to generate Java or C++, which should not be more than
simple pretty-printing. These steps are shown in Fig. 8.
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context SDLAgent inv: this.kind = SYSTEM implies

this.container->isEmpty()

Fig. 7. Example OCL constraint

The challenging part is, of course, the model transformation. To understand
the elements of the transformation, it is necessary to look deeper into the target
model. Therefore, we first discuss the target of the transformation before we
turn to the transformation itself.

The Combined Java/C++ Model. One of the key strengths of ULF-Ware
is the relative ease with which source or target language can be replaced by
something else. As long as the metamodel of the new language is similar to that
of the old one, only a few transformation rules will have to be adapted. This is
partly due to the inheritance of transformation rules as explained in Sect. 3.

In our ULF-Ware prototype SDL- compiler we use yet another approach
for the target model: a combined M 2 model for both Java and C++. Many
languages share common concepts, as has been shown and made use of in [11],
such as the quite abstract concept of namespace. For programming languages,
the similarities go even further.

Many differences in those languages are purely syntactical or for simple static
semantics, such as the declaration of variables before use. The most important
differences are support for crash-avoidance (which is irrelevant in a theoretical
context) and the extent of the available libraries, neither of which affect the
metamodel.

Java and C++ in particular are very similar to each other. Still, a complete
metamodel would exhibit a number of fine differences such as visibility and the
(non-)existence of multiple inheritance. However, we want to use Java and C++as
output languages only.2 This allows us to build a metamodel that can represent
only the intersection of features from Java and C++.

Since Java and C++ have so much in common, the combined metamodel is
still expressive enough to allow arbitrarily complex models. It also inherits from
the package Common Concepts, which will make the transformation simpler.

To generate source code from the model in the repository is a straightforward
unparsing process. In Fig. 8 and 9 these unparsers are called cgc and cgj. The
results of the pretty-printing are sometimes almost identical, as in the figure.3

Run-Time Libraries. When generating target source-code, it is usually con-
venient not to overburden the code generator with too much intelligence, but
to put as much functionality as possible into a common run-time library. As an

2 Although the idea of complete “roundtrippability” is very tempting, it seems almost
impossible to build up an SDL specification for an arbitrary Java or C++ program
in general. Note that the existing tools that generate UML from Java only cover the
structural aspects.

3 Note that in the figure the left-hand side is in UML syntax for easier recognition.



12 J. Fischer et al.

Fig. 8. Transforming the models (continuation of Fig. 5)

Fig. 9. Pretty printing for C++ and Java

example, when generating code for an SDL output, you could generate the code
that looks for the correct route, puts the signal in the corresponding queue etc.
in place, thereby letting the code generator do all the work. Alternatively, the
code generator only produces a function call; the function will be defined in the
run-time library.

We have used this technique in our SITE tool chain [12]; an explanation of
the library can be found in [13]. The main benefit there was that it is possible to
exchange the library to make the generated code behave differently; for example
to generate statistics for a simulation run versus fast execution or exchange of
signals to the environment via a selectable method.

In the context of ULF-Ware this separation has another advantage: It allows
us to flatten the differences in the target languages by abstraction, such as the
different data types used for the signal queues. This makes it easier to write the
code generators, at the expense of having to write the run-time libraries.
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Model Transformations. In SITE, we have gathered experience with the
transformation of abstract syntax trees. We have used Kimwitu++ [14] for the
definition of the abstract grammar and the pattern matching. The transforma-
tion of models in repositories is similar to this; the main difference is that the
number and order of children is usually not fixed, but expressed through relations
between objects. To this end we will use a newly-written pattern matcher for
models, called MOPA, already used in earlier stages of the ULF-Ware process.

Just as the source metamodels share common concepts, expressed as a pack-
age inherited by both the SDL and the UML metamodels, the transformations
for these languages share common transformations as well. The concrete trans-
formations will inherit the common transformations and complete them with the
rules specific for the source metamodel.

Some of the transformations will be trivial: The target metamodel also in-
herits from the Common Concepts package. Consequently, some transformations
will comprise of merely a copy of the source model element into the target model.

3.4 Meta-tools

The tools discussed so far are sufficient to implement the described metamodel-
based SDL- compiler. However, it is very hard to extend our compiler to support
additional input languages (in compiler construction terms: to add additional
frontends) due to two reasons:

– The first one is that usual (textual) programming languages do not have a
metamodel. Most programming languages are defined by a grammar that
describes the syntactical structure and English text explaining the semantic
behaviour. As shown in [11] it is not possible to automatically generate
a good metamodel from a given grammar. The metamodels automatically
generated are as a matter of principle rather representations of the grammar
than of the programming language. However, you can use such metamodels
as a base and create good metamodels by refinement, but this requires a lot
of writing by hand.

– The second problem is that even if you have a grammar and a corresponding
metamodel you still do not have a parser for the language nor you have a
model-generator. In the SDL- compiler this part has to be hand-coded as
well.

The solution to both problems mentioned are meta-tools. One of our planned
meta-tools is a program which reads grammars from the desired (input-)language
specification and generates a corresponding metamodel. To avoid the mentioned
handwritten metamodel refinement we plan to make annotations to the grammar
description. These annotations shall be used by the meta-tool to directly generate
a good metamodel.

Another meta-tool (or an addition to the first one) is planned that deals with
the automatic generation of frontends. These frontends should be able to parse
languages according to a given grammar and generate a corresponding model
according to a given metamodel in the repository.
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Fig. 10. Connections between grammar-based languages and the metamodelling tools

Figure 10 tries to graphically clarify the mentioned problems and propose
solutions. You can see a language and its grammar on the upper-left part of the
picture. The language’s metamodel shall be derived directly from the grammar
and some additional information. The additional information has to be written
first, of course.

Once you have a grammar and a corresponding metamodel you can automat-
ically create the compiler which parses programs and creates the appropriate
model (the compiler is shown near the lower border in Fig. 10).

Similar but not identical problems exist at the backend of our compiler. In
the previous section we described code generators for Java and C++. However, if
we want to extend our SDL- compiler to cope with additional target languages
we have to implement the corresponding code generators by hand. To avoid
this work we plan to implement meta-tools which use the metamodel and the
grammar of a specific language and automatically create code generators.

4 Conclusions

With ULF-Ware we propose an open framework, a methodology to build lan-
guage tools based on a shared core repository with integrated languages based on
common concepts. We have started to build the first example ULF-Ware pieces
to prove our concept.

If successful, ULF-Ware will allow reuse among languages and among im-
plementation of tools, independent tool development, and tools for integrated
languages. This seems promising, but there are a few risky points: the idea of
reusing and integrating via a common concept set is yet lacking any practical
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proof; the integration of languages on tool-level is useless, when there are no
proper editors.

However, it is a promising and thus interesting field of research. We plan
to continue to develop techniques for ULF-Ware based tools. We will prove
the common concept idea with implementations to an SDL/UML integration.
Reasonable languages to continue with are eODL, ASN.1, or TTCN. It is a long
way to go, but ULF-Ware is a reasonable approach to unify the ITU-T language,
and to provide new possibilities and means to model the telecommunication
systems of tomorrow.

Even if ULF-Ware is in the first place intended to unify the ITU-T languages,
its philosophy (and more importantly all research it results in) is applicable to
all language development.
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Abstract. Security is a crucial aspect in any modern software system.
We consider access control as a concern in the sense of Aspect Oriented
Programming and present a design language for access control aspects
in distributed systems, called View Policy Language. The specification
of the View Policy Language for a given application is integrated into
a model-driven software engineering approach to support the designer
throughout the entire software process. We give a graph-based formal
semantics to the design models in order to reason about model transfor-
mations. In particular, we can formally ensure the preservation of model
constraints in the transformation process, and hence prove the reusability
of security aspects in dynamic models for different platforms.

1 Introduction

Security is a crucial aspect in any modern software system and is usually spread
across the entire system merged with functional system components. The mix-
ture of application and security logic complicates the enforcement of policy
changes and is error-prone. Aspect-oriented programming separates application
code from application independent code [8, 15]. Aspects represent usually non-
functional concerns such as logging, security. More specific, in adaptive pro-
gramming the Law of Demeter for Concerns (LoDC) is implicitly used (that is
“talk only to your friends that contribute to a common set of concerns or that
share the same concerns” [14]). This has the advantage that application logic
can be developed independently and aspects can be added when needed without
changing application code.

We present a design language for access control aspects in distributed sys-
tems, called View Policy Language (VPL). The specification of the VPL for a
given application is integrated into a model-driven software engineering approach
to support the designer throughout the entire software process. Access control
requirements can be modelled as platform independent in the VPL and are then
mapped according to the mappings defined in the VPL to specific platforms.
Since a platform independent model (PIM) is valid for any specific platform, it
reduces the management and maintenance of one model instead of many models
for each specific platform. Changes in the access control model can be done once
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in the platform independent model and the change then propagates consistently
to all platform specific models (PSM).

Model Driven Development (MDD)[9] has the additional advantage that the
many specification documents developed in the software development process
are related and that existing dependencies are documented. Documentation of
dependencies helps to take into account every change of a model or a relation
necessary to guarantee consistency. One of the main drawbacks of model-driven
development is the consideration of security requirements in the development
process, which is not yet sufficiently supported.

Another advantage of MDD is the documentation of model transformations
due to changing requirements. However, to ensure a consistent model transforma-
tion and the preservation of constraints, we give a graph-based formal semantics
to the design models. In particular, we investigate how the satisfaction of access
control constraints is preserved by a model transformation. We present formal
results that ensure the preservation of model constraints throughout the trans-
formation process, and hence prove the reusability of security aspects in dynamic
models for different platforms. Satisfaction of all modified PSMs can be decided
only on the basis of the evolution of the PIM. None of the PSMs need to be
checked anymore. This reduces the check of a set of PSMs to a single check of
the evolution morphism.

The remainder of the article is organized as follows: Section 2 presents the
VPL as a design language for access control aspects. Section 3 concerns the
integration of the design of a VPL into the model-driven software engineering
process. Section 4 introduces the graph-based semantics and Section 5 concerns
model transformations and results for access control constraint preservation.
Section 6 concludes the article and points to future work.

2 VPL – A Design Language for Access Control Aspects

Aspect-oriented programming (AOP) separates concerns into single units called
aspects [8]. Aspects can range from notions such as security and quality of ser-
vices to buffering, caching and logging. An aspect is a modular unit of cross-
cutting implementation and encapsulates behaviors that affect multiple classes
into reusable modules. With AOP, each aspect can be expressed in a separate
and natural form, and can then be automatically combined together into a final
executable form by an aspect weaver. As a result, a single aspect can contribute
to the implementation of a number of procedures, modules, or objects, so in-
creasing reusability of the codes.

The View Policy Language (VPL) we propose to specify access control as-
pects, is based on an extended role-based access control (RBAC) model [18]. A
VPL policy is written with respect to any model or interface intermediate lan-
guage, which specifies operations and their parameters. Examples of such models
are UML class diagrams, IDL (Interface Definition Language) or WSDL (Web
Service Description Language) specifications. The VPL introduces views as a
grouping concept for permissions to call operations. Views are assigned to roles
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and a subject can call an operation if it has a role with a view that contains the
permission required to call the operation.

The VPL constructs are illustrated in this paper by a small conference man-
agement application [5, 3]. In the conference management system, the program
committee (PC) can issue a call for papers to open a submission phase for a
conference, so that authors may submit papers. The PC is responsible for the
declaration of the submission deadline, which terminates the submission phase
and starts the reviewing phase. The PC writes and submits reviews for the pa-
pers. The reviewing phase is terminated by the PC calling for a final decision.

<< entity >>

ConferenceManagement

+beginSubmission():void

+deadlineReached():void

+makeDecision():void

+issueCallForPapers(cfp:String):void

+getSubmissionManagement():SubmissionManagement

<< entity >>

SubmissionManagement

+listPapers():PaperIdSeq

+registerPaper(author_names:String[],title:String):Paper

+getPaper(paperNumber:int):Paper

+assignReviewers(reviewerIDs:int[],paperID:int):void

+getAssignedPapers(reviewerID:int):PaperIdSeq

<< entity >>

Paper

+submit():void

+createReview(reviewerID:int):Review

+read():String

+write(text:String):void

+getReviews():ReviewList

<< entity >>

Review

+read():String

+write(reviewText:String):void

+getReviewerID():int

Program Commitee

Author

−name:String

1

*

11

1

*

1

1

1

1
1

*

1

1

1

1

Fig. 1. The class diagram for the conference application

The VPL for this application is based on the class diagram in fig. 1: it gives
the permissions to call the operations specified in the diagram. A VPL policy
consists of a set of roles, a set of views and a set of schemas. A VPL policy
starts with the keyword policy and a policy name. A roles clause specifies the
roles and optionally a role extension relation between roles, role properties and
an initial view assignment to roles. In the example, we have the roles Program
Committee and Author which both have a property name of type String.

policy Conference {

roles

Program Committee

Author property String name ...}

Views are defined with the keyword view, the view name and the interface
the view controls (the interface for which the view gives the permission to call
a subset of the interface operations). The view PaperBaseView is a view on
the interface Paper that gives the permission to call operation read(). View
PaperView extends view PaperBaseView (specified by extendedView:baseView).
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Therefore, PaperView permits calling the operations read() and createReview().
View PaperView2 permits calling the operations read(), write() and submit().
Virtual views are views that do not contain operations. They are used to control
the view assignment.

view PaperBaseView controls Paper {

allow read }

view PaperView:PaperBaseView { view PaperView2:PaperBaseView {

allow createReview } allow write,submit }

virtual view SubmissionPhase controls ConferenceManagement

virtual view ReviewingPhase controls ConferenceManagement

Besides roles and views, a VPL policy specifies schemas for the dynamic as-
signment and removal of users and views to and from roles, respectively. The
modification of the role assignments are triggered by operation calls. Each VPL
schema (specified by the keyword schema) specifies for one interface (speci-
fied after the keyword observes) which operation call causes which role as-
signment modifications. For example, the schema InitialState observes the in-
terface ConferenceManagement and assigns the virtual view SubmissionPhase
to role Author when the operation beginSubmission() is called. The schema
SubmissionPhase has a trigger operation registerPaper() and assigns the view
PaperView2 on the registered paper to the authors of the registered paper. The
keyword result specifies the return value of an operation (here the return value
of operation registerPaper(), which is a paper). The condition Author.name in
author names ensures that the view PaperView2 on the registered paper can be
used only by the authors of the paper (specified in the parameter author names).

schema InitialState observes ConferenceManagement

{

beginSubmission

assign SubmissionPhase to Author ... }

schema SubmissionPhase observes SubmissionManagement

{

registerPaper(author_names, title)

assign PaperView2 on result to Author

where Author.name in author_names }

The VPL policy is then deployed. This is done by assuming an interceptor
facility as a mediator between the aspect layers and the system kernel (CORBA
interceptor [16], RACCOON interceptor implementation [6], Axis handler con-
cept [2]). This approach is different from the aspect weaving approach in which
aspects are implemented separately from the application logic and is then com-
piled together (for example in AspectJ, JBOSS4.0).
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3 Model-Driven Development of the VPL

The specification of the VPL for a given application is a difficult design task,
especially since system designers are usually not security experts. Therefore, the
designer should be supported in the software development process to obtain the
right security requirements and their translation into a VPL policy. We present
in this section a model-driven approach to develop the access control aspects in
a VPL policy.

3.1 Developing the PIM for Access Control Aspects

The software process starts with the analysis stage in which use case diagrams are
developed. We use the example of the conference management system introduced
in section 2, and fig. 2 shows the corresponding use case.

Programm Committee

ConferenceSteering

Reviewing

Submission

Author
1

1 <<include>>

1

1

<<include>>

Fig. 2. The use case for the conference application

The class diagram developed on the basis of the use case diagram is shown
in fig. 1. The entities model the core functionality of the system.

The use case and the class diagram already contain access control aspects.
Actors in the use case diagram must have access to the use cases to perform
their task. A use case is the basis for operations specified in the class diagram.
Therefore we have access requirements of actors to operations of interface oper-
ations. In [4] it is shown that the access control roles can be derived from the
UML actors of the use case diagram. Following the example we get the roles
Program Committee and Author.

The use cases are refined in sequence diagrams using the operations of the
class diagram. Sequence diagrams specify the required accesses of actors to call
operations. In the sequence diagram in fig. 3 we see the required accesses of an
author. An author must be able to call operation getSubmissionManagment()
on interface ConferenceManagement, operation registerPaper() on Submission-
Management and operations write() and submit() on Paper. A basic set of views
are generated from the sequence diagrams, which contain the inherent access
information. In each sequence diagram each of the occurring objects is consid-
ered. For each object a view is generated, which contains the operation calls on
this object. For the sequence diagram in fig. 3 we get views which control inter-
face Paper, ConferenceManagement and SubmissionManagement. The view on
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author:Author cm:ConferenceManagement sm:SubmissionManagementpaper:Paper

1 : sm:=getSubmissionManagement()

2 : paper:=registerPaper(authorName,title)

3 : write(text)

4 : submit()

Fig. 3. The sequence diagram for the author’s view

interface Paper permits calling the operations write() and submit(). The view on
ConferenceManagement permits calling operation getSubmissionManagement().
The view on SubmissionManagement permits calling operation registerPaper().
For a more complete sequence diagram specification of the conference manage-
ment application and its generation of views see [13].

The views generated from sequence diagrams are generally incomplete in the
sense that they do not give a complete access control specification. This is due to
the fact that sequence diagrams show only scenarios the designer is interested in.
On the other hand, the views may be redundant in the sense that the same views
are generated from different sequence diagrams. To sum up, not all of the access
control information can be generated, and the designer uses the generated views
as a basis that is refined to the final access control specification. The refinement
includes also the introduction of access control roles and their initial assignment
to views.

The software designer gets a graphical model containing the actors as access
control roles and the views generated from the sequence diagrams. This model
is refined by the designer. Figure 4 shows the refined model that the designer
created on the basis of the generated views. For example, view PaperView2
is generated from the sequence diagram in fig. 3. Views are assigned to roles
by associations. For example, role Actor is assigned to the views PaperView2
and SubmissionMgmtView2. The cardinality at the association end of the view
specifies whether the view is initially assigned (value 1) or whether the view is not
assigned in the initial state but can be assigned later (value 0..1). For example,
the views SubmissionMgmtView2 and PaperView2 are not initially assigned to
the role Author, but can be assigned dynamically during runtime. For a more
detailed description of the generated model and its refinement see [13].

The dynamic assignment or removal of views to and from roles, respec-
tively, is modeled in an activity diagram. The operation call which triggers
a view change and the actual view-role relation modification are specified as
edge labels in the diagram. Figure 5 shows the activity diagram of our ex-
ample. The initial state is given by the assignment of views as specified in
fig. 4. The protection state changes if the PC opens the submission phase by
calling operation beginSubmission. Therefore the trigger is a call of oper-
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<< view >>

PaperView

+createReview(reviewerID:int):Review

<< view >>

ConfMgmtView

+issueCallForPapers(cfp:String):void

+beginSubmission():void

+deadlineReached():void

+makeDecision():void

+getSubmissionManagment():SubmissionManagement

Program Committee

<< view >>

SubmissionMgmtView

+listPapers():PaperIdSeq

+assignReviewers(reviewerIDs:int[],paperID:int):void

+getAssignedPapers(reviewerID:int):PaperIdSeq

<< view >>

SubmissionMgmtView2

+registerPaper(authors:String[],title:String):Paper

<< view >>

ReviewView

+write(reviewText:String):void

Author

<< view >>

PaperView2

+write(text:String):void

+submit():void

<< view >>

PaperBaseView

+read():String

<< virtual view >>

SubmissionPhase

<< virtual view >>

ReviewingPhase

<< requires >>
1

1

<< requires >>11

<< requires >>

1

1

<< requires >>1

1

1

1

<< requires >>

1

1

1

1

1

1

1

1

1

0..1

1

0..1

Fig. 4. Extension and refinement of the generated views

Initial_State SubmissionPhase

ReviewingPhase

PaperRegistration

Final_State

ReviewerAssignment

ReviewCreation

beginSubmission/assign SubmissionPhase on ConferenceManagement to Author

deadlineReached/remove SubmissionPhase on ConferenceManagement from Author
assign ReviewingPhase on ConferenceManagement to ProgramCommittee 

registerPaper(authorNames,title)/assign PaperView2 on result to Author
where Author.name in authorNames

makeDecision/remove ReviewingPhase on ConferenceManagement from ProgramCommittee

assignReviewers(reviewerList,paperID)/assign PaperView on Paper to Program Committee
where Paper.paperID == paperID and
          ProgramCommittee.reviewerID in reviewerList

createReview(reviewerID)/assign ReviewView on result to caller
 

Fig. 5. The dynamic changes of the protection state

ation beginSubmission, whose effect is the assignment of the view Submis-
sionPhase (which is a view on class ConferenceManagement) to role Author.
The new protection state is called SubmissionPhase in which authors are per-
mitted to submit their articles. Authors can register papers by calling opera-
tion registerPaper(authorNames,title). The effect of this operation call is
that all authors of the paper get the view PaperView2 on the registered pa-
per. That authors have only access to their paper ensures the condition where
Author.name in authornames. The attribute name of the role Author con-
veys the caller’s name which must coincide with one of the authors of the pa-
per. Calling operation deadlineReached ends the submission phase and starts
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the reviewing phase. The activity diagram specifies the view removal and as-
signment effects. In the reviewing phase, the operations assignReviewers and
createReview cause view assignment changes. In the former case, a set of re-
viewers get the right to work on the assigned paper. In the second case, a reviewer
gets the right to create a review for a paper. Calling operation makeDecision
changes into the final state.

The diagrams in fig. 4 and fig. 5 can be used to automatically generate a
VPL policy as introduced in section 2 and [13]. Therefore a software engineer
does not necessarily have to know the VPL syntax, since (s)he works only with
the graphical models integrated into the UML software process.

3.2 PSM for Web Services

After the PIM is modeled it can be mapped to specific platforms. We consider
next a Web Service platform. In theory, a Web Service specific UML profile
should be able to do the model-model transformation from the PIM to the
Web Service PSM, but in practice it is unlikely that this can be achieved in
a general form (then some design decisions must be done by the application
designer). Subsequently, an arguable design decision could be the introduction
of a primary, denoting a specific entity in the interfaces of the Web Service
PSM entities.

We omit the detailed PSM for the class diagram and show only the PSM
for the access control specification in fig. 6. Roughly speaking, the name of
the entities are mapped onto Web Service endpoints (service interfaces) with
the name of the corresponding entity, while the methods are enhanced by a
parameter of type String representing the identifier (cfMmgtID, paperID,
etc.). These identifiers act as a primary key denoting the specific entity to interact
with via the service. The modified operations are used in the Web Service PSM
in fig. 6.

4 Formal Semantics by Graph Transformation

We give next a formal semantics based on graph transformations to PIMs and
PSMs. We briefly introduce the basic notions of graph transformations necessary
for the remainder of this article1 and present the representation of models and
model relations by graphs and graph morphisms, respectively.

A graph consists of disjoint sets of nodes and directed edges e : a → b from a
source node a to a target node b. Nodes and edges of a graph have a type used
to identify graphical objects and attributes used to store data together with the
static objects. The graphical representation of PIMs and PSMs gives a direct
interpretation of these models by graphs, which we denote by G(PIM) and
G(PSM), respectively. Consider as an example the Web Service PSM in fig. 6.
The nodes of the underlying graph G(PSM) are all views, virtual views and

1 For the general concepts of graph transformations see [17].
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<< view >>

PaperView

+createReview(reviewerID:int,paperID:String):String

<< view >>

ConfMgmtView

+issueCallForPapers(cfp:String,cfMgmtID:String):void

+beginSubmission(cfMgmtID:String):void

+deadlineReached(cfMgmtID:String):void

+makeDecision(cfMgmtID:String):void

+getSubmissionManagment(cfMgmtID:String):String

Program Committee

<< view >>

SubmissionMgmtView

+listPapers(smMgmtID:String):PaperIdSeq

+assignReviewers(reviewerIDs:int[],paperID:int,smMgmtID:String):void

+getAssignedPapers(reviewerID:int,smMgmtID:String):PaperIdSeq

<< view >>

SubmissionMgmtView2

+registerPaper(authors:String[],title:String,smMgmtID:String):String

<< view >>

ReviewView

+write(reviewText:String,paperID:String):void

Author

<< view >>

PaperView2

+write(text:String,paperID:String):void

+submit(paperID:String):void

<< view >>

PaperBaseView

+read(paperID:String):String

<< virtual view >>

SubmissionPhase

<< virtual view >>

ReviewingPhase

<< requires >>
1

1

<< requires >>11

1

0..1

1

1

<< requires >>

1

1

1

1

1

0..1

<< requires >>

1

1

<< requires >>1

1

1

1

1

1

Fig. 6. Web Service PSM

actors. The edges of G(PSM) are all associations. View nodes are of type view,
virtual view nodes have type virtual view and actor nodes (which represent the
access control roles) have type role. Graph G(PSM) has edges of type requires
(for associations labelled requires), inherits (for associations representing
generalizations) and a (not explicitly shown) default label (for all associations
without special label). The node attributes of nodes consist of a node name and
(if the model element has any) a set of operations. Attributes of edges contain
the multiplicities of associations.

A graph morphism f : G → H between two graphs G and H consists of an
injective partial mapping between the nodes of G and the nodes of H and an
injective partial mapping between the edges of G and the edges of H so that f
respects the graph structure. This means that whenever the mapping for edges
is defined for an edge e, the mapping for the source node s and the target node
t of e is defined and f(s) and f(t) are the source and target node for the edge
f(e) in H. Furthermore, nodes and edges are mapped only to nodes and edges
of the same type and f respects the attribution – the values of the attributes are
either unchanged or they are in a previously defined relation (what is defined
in the algebraic specification of the attribute type). We call a graph morphism
total if the mappings between the node and edge sets are total.

A relation between PIMs and PSMs (or between two PIMs, or two PSMs)
is represented as a graph morphism between the underlying graphs G(PIM)
and G(PSM). Consider fig. 8 as an example, which shows four graphs and four
graph morphisms. The graph PIM on top of the left-hand side is the underlying
graph of the PIM in fig. 4. For the sake of readability, we omitted the operations
and multiplicities of edges in fig. 8. The graph on the bottom of the left-hand
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side is the underlying graph of the PSM in fig. 6. The graph PIM ′ on top of
the right-hand side is the underlying graph of the PIM in fig. 7 and the graph in
the right lower corner is constructed by these models (more details in Sect. 5).
The graph morphism f : PIM → PIM ′ maps the grey nodes of graph PIM to
the grey nodes of graph PIM ′ which have the same name. The white nodes of
graph PIM are not mapped by graph morphism f , i.e. f is undefined on these
nodes. The white nodes of graph PIM ′ have no pre-image in PIM . The graph
morphism m between graph PIM and PSM is total (i.e., each node of PIM is
mapped to a node in PSM).

5 Evolution of the PIM and Model Transformation

Due to changing requirements a PIM may be modified. If a PIM changes, how-
ever, all PSMs belonging to this PIM must be changed consistently. This section
concerns the evolution of a PIM and the succeeding transformation of all PSMs.
We show how PIM evolution is modeled and give a formal construction for the
modification of the PSMs. Furthermore, we formally prove conditions for the
preservation of model constraints in this transformation process.

The evolution of a PIM is modeled by a graph morphism f : G(PIM) →
(PIM ′) where PIM ′ models the new requirements. We call the graph mor-
phism f an evolution morphism. All elements of G(PIM) on which f is un-
defined are removed, all elements on which f is defined remain unchanged
and all elements of G(PIM ′) without pre-image in G(PIM) are added. Fig-
ure 7 shows an evolution of the PIM in fig. 4. The evolution concerns the
removal of role Program Committee and the addition of the roles Chair and
Reviewer. The reviewer is responsible for the management, reviewers can only
review papers. Furthermore, the view ConfMgmtView is removed and replaced by
a new view ConfMgmtView and ConfMgmtView2. ConfMgmtView2 contains only
the operation getSubmissionManagement which is not contained anymore in
ConfMgmtView. ConfMgmtView is an extension of ConfMgmtView2. Lastly, the
view SubmissionMgmtView3 is added.

Figure 8 on top shows the corresponding evolution morphism f : G(PIM) →
(PIM ′). The morphism is undefined on the white nodes of PIM and defined on
grey nodes. The white nodes in PIM ′ are added by f .

All PSM models must be changed according to the modified PIM. For the
construction of the PSMs the categorical construction of a pushout is used. We
explain the construction informally and refer the reader interested into the formal
definition to [7].

Construction 1 (Pushout). Construct the pushout graph PSM ′ of an evo-
lution morphism f : PIM → PIM ′ and a total graph morphism m : PIM →
PSM (the PIM-PSM mapping) as follows:
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<< view >>

PaperView

+createReview(reviewerID:int):Review
<< view >>

ConfMgmtView

+issueCallForPapers(cfp:String):void

+beginSubmission():void

+deadlineReached():void

+makeDecision():void

Chair

<< view >>

SubmissionMgmtView3

+getAssignedPapers(reviewerID:int):PaperIdSeq

<< view >>

SubmissionMgmtView

+listPapers():PaperIdSeq

+assignReviewers(reviewerIDs:int[],paperID:int):void

<< view >>

SubmissionMgmtView2

+registerPaper(authors:String[],title:String):Paper

<< view >>

ReviewView

+write(reviewText:String):void

Author Reviewer

<< view >>

PaperView2

+write(text:String):void

+submit():void

<< view >>

ConfMgmt2

+getSubmissionManagement():SubmissionManagement

<< view >>

PaperBaseView

+read():String

<< virtual view >>

SubmissionPhase

<< virtual view >>

ReviewingPhase

1

1

10..1

<< requires >>
1

1

<< requires >>

1

1

<< requires >>

1

1

<< requires >>11

1

0..1

1

1

1

0..1

1

0..1

1

0..1

<< requires >>

1

1

<< requires >>1

1

Fig. 7. Evolution of the PIM in Figure 4

1. Take PSM and remove all nodes and edges x with x = m(y) from PSM
if f is undefined for y. If there remain edges without source or target node,
delete them. One gets a graph PSM i.

2. Add all elements x of PIM ′ to PSM i which have no pre-image in PIM .
We get the graph PSM ′.

Performing the construction for morphisms f : PIM → PIM ′ and m :
PIM → PSM we get the following diagram. The morphism f ′ is partial, the
morphism m′ is total and we have f ′ ◦ m = m′ ◦ f [7].

Figure 8 shows an example of a pushout construction. First, we remove from
PSM the nodes Program Committee and ConfMgmtView, since f is undefined on
theses nodes. The evolution morphism is also undefined on all edges connected
to these two nodes. Therefore these edges are deleted as well. Then, the nodes
Chair, Reviewer, ConfMgmtView2, ConfMgmtView and SubmissionMgmtView3
and all their connected edges are added and we get the graph PSM ′. The mor-
phism m′ is the embedding of PIM ′ into PSM ′, f ′ is the partial embedding of
PSM into PSM ′.

By the pushout construction, we can automatically construct the modified
PSMs for any evolution morphism f : PIM → PSM ′.
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Fig. 8. Pushout models evolution of PSMs
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5.1 Preservation of Access Control Constraint Satisfaction

Access control models can be extended by access control constraints to describe
requirements that have to be satisfied by any configuration of the system. For
example, the following access control constraints should be satisfied in the con-
ference management system.

1. A virtual view must not have any operation.
2. There is no multiple inheritance of roles.

Constraint expression is a difficult task and existing languages are often too
complex for administrators to determine whether a set of constraints really sat-
isfies a requirement. Therefore, access control specification languages are intro-
duced, which have a complexity understandable by administrators and expres-
sive enough for most of the practical access control constraints [1, 10, 11]. We use
the approach of graphical constraints presented in [11] which integrates into the
graph transformation approach introduced above and which provides a formal
semantics to verify the constraints [12].

Definition 1 (Graphical Constraint). A graphical constraint is a graph C
and a graph G satisfies C if there does not exist a total graph morphism p : C→G.

Graphical constraint 1) in fig. 9 specifies the requirement of operationless
virtual views. The expression (operation)+ means that there is at least one or
more operations. A system satisfies this constraint if no system state contains
this forbidden structure. Graphical constraint 2) forbids a role which inherits
two (or more) roles.

<<role>>
rolename1

<<role>>
rolename

<<role>>
rolename2

inheritsinherits

<<virtual view>>
viewnameV1

1) 2)

(operation) +

Fig. 9. Graphical constraints for the conference management system

In the sequel, we investigate how the satisfaction of access control constraints
is preserved by an evolution morphism. The aim is to decide the satisfaction of
all modified PSM models only on the basis of the evolution morphism. None of
the PSM models themselves need to be checked anymore. This reduces the check
of a set of PSM models to a single check of the evolution morphism.

The following is a necessary condition for the satisfaction of constraints in
the modified PSM models. Only if the new PIM satisfies the constraints, can
the PSMs satisfy the constraints. The proof is based on the fact that PIM ′ is a
subgraph of PSM ′.

Proposition 1. Let f : PIM → PIM ′ be an evolution morphism, m : PIM →
PSM a PSM mapping and PSM ′ be the pushout of f and m. If PSM ′ satisfies
a graphical constraint C then PIM ′ satisfies C.
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The next proposition requires some further notations: We define by G|C the
greatest subgraph of a graph G that contains only the nodes and edges with a
type occurring in C. For example, constraint 2) in fig. 9 has nodes only of type
role and edges only of type inherits. The graph PIM ′|C for the graph PIM ′

in fig. 8 consists of the role nodes Chair, Author, Reviewer and the inherits edge
between Chair and Reviewer. Furthermore, we call a constraint C connected if
there is for each node v in C a path of edges to any other node v′ in C.

The next proposition states that an evolution morphism does not violate a
constraint if the evolution morphism does not add any parts occurring in the
constraint. Furthermore, an evolution morphism does not violate a connected
constraint if the added elements relevant to the constraint are not connected to
existing elements.

Proposition 2. Let PSM ′ be the pushout of an evolution morphism f : PIM →
PIM ′ and a total morphism m : PIM → PSM so that PSM and PIM ′ satisfy
the graphical constraint C.

1. If (PIM ′ \ f(PIM)) ∩ C = ∅ then PSM ′ satisfies C.
2. Let C be connected and for each edge e in (PIM ′|C \ f(PIM |C) both the

source node and the target node are in (PIM ′|C \ f(PIM |C). Then PSM ′

satisfies C.

Proof. 1. Assume PIM ′ does not satisfy C (that there is a total injective mor-
phism p : C → PIM ′). Then we have several cases. First, p(C) ⊆ f ′(PSM).
This is not possible since then there is the morphism f ′−1 ◦ p : C →
PSM . This is a contradiction to the assumption that PSM satisfies C.
Second case, p(C) ⊆ m′(PIM ′). Since there is no overlap between C and
(PIM ′ \ f(PIM)), p(C) ⊆ m′(f ′(PIM)). But then there is a morphism
m ◦ f−1 ◦ m′−1 ◦ p = f ′−1 ◦ p : C → PSM . This is again a contradiction.

2. Assume PSM ′ does not satisfy C (that there is a total injective morphism
p : C → PSM ′). p(C) ⊆ f ′(PSM) and p(C) ⊆ m′(PSM) is not possible
since otherwise PSM or PIM does not satisfy C. Therefore, there must be
a node or an edge in m′(PIM ′) that is not in f ′(PSM). Assume it is a node
x: since C is connected there must be a node in f(PSM) \ m′(PIM ′) to
which x is connected. This is a contradiction to the fact that there are no
edges between elements of (PIM ′|C \ f(PIM |C) and f(PIM |C). Assume it
is an edge e: since C is connected then also the source and target node are
not in m′(PIM ′). Then there is a contradiction analogy to the node case.

Proposition 2 can be used to verify the satisfaction of the PSMs with respect
to the constraints in fig. 9 and the evolution morphism in fig. 8. PSMs satisfy
constraint 1) since the evolution morphism does not add any virtual view. PSMs
satisfy constraint 2) since the constraint is connected and the added roles Chair
and Reviewer are not connected to the existing role Author. Or rephrased,
the source and target nodes of the added inherits edge are both added by the
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evolution morphism. Therefore, we are sure that any transformation of a PSM
with respect to this evolution morphism satisfies the constraints in fig. 9.

6 Conclusions

We presented the VPL as design language for access control aspects and in-
tegrated the design of a VPL policy into a model-driven software engineering
process. A graph-based semantics for the models enables us to prove the preser-
vation of access control constraints during the model transformation process.

Future work will integrate the model-driven approach into the Eclipse project
including the generation of the access control model from UML diagrams. An-
other interesting verification approach for access control constraints is model
checking. A model checker can be used to automatically check constraints and
to provide counter examples for constraint violations visualized in UML sequence
diagrams. Future work in this area concerns the integration of a model checker
into the Eclipse-based access control development process.
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Abstract. The Object Constraint Language (OCL) offers so-called non-
deterministic constructs which are often only poorly understood even
by OCL experts. They are widely ignored in the OCL literature, their
semantics given in the official language description of OCL is ill-defined,
and none of today’s OCL tools support them in a consistent way.

The source of the poor understanding and ill-defined semantics is, as
identified in this paper, OCL’s attempt to adopt the concept of non-
determinism from other specification languages with fundamentally dif-
ferent semantical foundations. While this insight helps to improve the
understanding of non-deterministic constructs it also shows that there
are some formidable obstacles for their integration into OCL.

However, in some cases, non-deterministic constructs can be read as
abbreviations for more complex deterministic constructs and can help to
formulate a specification in a more understandable way. Thus, we suggest
to integrate non-deterministic constructs in other specification languages
such as Z, JML, Eiffel whose semantical foundations are similar to those
of OCL.

1 Introduction

Specification languages describe properties of systems on a certain level of ab-
straction. System development typically requires a broad spectrum of specifica-
tion languages which must be able to cope with different properties (structural,
behavioral, non-functional) in different stages of development. This was the main
motivation in the early 90-ies to tightly bind 7 different diagrammatic languages
to the Unified Modeling Language (UML)[1].

The UML language description [2, 3] defines the integrated languages and
their interconnections in terms of a meta-model that is written in MOF (a
derivate of UML class diagrams) and the Object Constraint Language (OCL).
The meta-modeling technique has become extremely popular in recent years and
is used more and more often to define other specification and even programming
languages.
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This development has promoted the use of OCL through the fact that well-
formedness rules of the syntax in meta-model based language definitions are
described by OCL constraints. Since well-formedness rules are the core of a
language description, the application of OCL in meta-models requires an excep-
tionally deep understanding of this constraint language. Mistakes, made during
the definition of a new language, will obfuscate its syntax and also its semantics
and thus the purpose of the new language itself.

Widely neglected and often misunderstood are up to now so-called non-
deterministic constructs in OCL. The most basic non-deterministic construct is
the library operation asSequence() that expects as an argument a term of type
Set(T)1 and yields a term of type Sequence(T). Semantically, asSequence()
is used to turn a set into a sequence that has the same elements as the set. The
construct asSequence() is called non-deterministic, because it imposes a non-
deterministically chosen ordering on the elements in the resulting sequence which
is not given for the elements of the argument set. As a second non-deterministic
construct, the operation any() is offered by the OCL library. It expects a term
of type Set(T) and yields a term of type T . Semantically, the operation any()
can be used to select non-deterministically an element from a set. The non-
deterministic selection could be simulated by turning the set into a sequence
imposing an ordering on its elements and, in a second step, by taking that el-
ement which has order number 1. For this reason, any() can be seen as an
abbreviation for asSequence() concatenated with first(), another library op-
eration which yields the first element of a sequence if the sequence has at least
one element and undef , otherwise.

As it is shown in section 2, there are some formidable obstacles for defining a
formal semantics for non-deterministic constructs in OCL. The main argument
goes as follows: The semantics of constraints attached to a system description
is defined on the basis of constraint evaluations in concrete system states. For
instance, a constraint attached as an invariant to the system description char-
acterizes the allowed system states for which the constraint must be evaluated
to true. This simple semantics, however, cannot be applied to an invariant con-
taining non-deterministic constructs because the evaluation of the invariant in
a given state might yield more than one result, for example, true and false.

The problematic semantics of non-deterministic constructs in OCL makes
users understandably reluctant to take advantage of non-determinism. For ex-
ample, the UML metamodel [2, 3] (both documents have together 839 pages)
is authored by some of the leading experts for UML, but any() is the only
non-deterministic construct that occurs (21 times). Even more interesting, the
construct any() is always applied on sets containing exactly one element. When
applied on a singleton set, however, the construct any() can be seen as a de-
terministic operation. Thus, the whole UML metamodel contains not a single,
truly non-deterministic constraint.

1 Set(T) is a parameterized type where T is a placeholder for subtypes of the prede-
fined type OclAny.
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Although asSequence() is the more basic construct compared to any() this
paper concentrates on the semantics of any() for two reasons. Firstly, the non-
determinism introduced by asSequence() cannot be captured by an evaluation
based semantics without losing other important logical properties. Secondly, the
only non-deterministic construct used in practice, and this also only very rarely,
is any() – that is, the combination of asSequence() and first(). Fortunately, a
constraint using any() can, as we will see, often be rephrased by another constraint
that has the same ‘intended’ meaning, but only contains deterministic constructs.

For the design of the specification language OCL, our results have two con-
sequences. In principle, the evaluation based semantics prevents OCL having
non-deterministic constructs. Thus, we propose to delete asSequence() from
the OCL library. The construct any() can remain in the library with the same
meaning it currently has (non-deterministic selection of one element from a set)
but not as an abbreviation for asSequence()->first(). Instead, any() should
be introduced as an abbreviation according to the transformation algorithm
given in section 4.

The remainder of the paper is structured as follows. Section 2 points out the
problems in the current semantics of OCL caused by non-deterministic constructs.
A subsection illustrates how the unsolved problems have a disastrous impact on the
tool support for OCL. Section 3 compares OCL with other specification languages
and identify the reasons why OCL tries to offer non-deterministic constructs. This
comparison will clarify what the intended meaning of the construct any() is. After
the role, the construct any() plays in OCL, is understood, Section 4 presents two
attempts to capture the intended meaning formally. Both approaches have some
limits, but the limitations of the second approach based on transformation are ir-
relevant for practical specifications. Section 5 concludes the paper.

2 Problems with the any()-Construct in OCL

The Object Constraint Language (OCL), specified in its most recent version 2.0
in [4], is a strongly typed, term-based specification language. Terms are either
atomic, for example variables, or are composed of an operation that is applied
to subterms. Terms of the predefined type Boolean are called constraints.

When attached to a class diagram, the purpose of an OCL constraint is to
restrict the allowed states of the system described by the class diagram. If a
constraint is attached as an invariant, then the state of the system must always
conform to that constraint. If a constraint is attached as a pre- or post-condition
of a system operation, then the system state must conform to the constraint
whenever the operation is invoked or has terminated.

The meaning (semantics) of an OCL constraint must clarify which of the
possible system states conform to it and which of them do not conform. The
separation between conforming and non-conforming states is implicitly given by
an evaluation function eval that yields, applied on a concretely given state and
a constraint, one of OCL’s three truth-values true, false, undef . The function
eval is defined in [4] by structural induction on all OCL terms.
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The application of eval on a constraint constr and a state st is called eval-
uation of constr in st . The state st conforms to constr if and only if constr is
evaluated in st to true. If a constraint is attached as a post-condition to the sys-
tem and contains the @pre operator, then its evaluation is analogously defined
on a pair of states instead of a single state.

In the OCL language description [4], any() is declared as an operation with
one argument2 of type Collection(T) and return type T . More precisely, the
operation any() is used in composed terms of the form src->any(), where src
has the type Collection(T) and the composed term is of type T . Most often,
any() is applied to terms of type Set(T) (a subtype of Collection(T)) and,
to facilitate our argument, we will assume in the rest of the paper src to be of
type Set(T).

The evaluation of terms of form src->any() is described in the OCL language
specification as a non-deterministic choice from the set that is obtained by evalua-
tion of src (see [4–page A-19]). If the evaluation of src yields an empty set or a sin-
gleton set, the evaluation of src->any() yields undef or the single element of the
singleton respectively. In these two exceptional cases, the evaluation of src->any()
is deterministic and well-defined. In all other cases, the non-deterministic evalu-
ation can cause serious problems as a first example illustrates:

context Foo :: foo1():Integer
post: result = Set{1,2}−>any()

The term Set{1,2}->any() is non-deterministically evaluated in any state
to 1 or 2. The official OCL semantics in [4] does not clarify the consequences of
non-deterministic evaluation for the conformance of states to a non-deterministic
constraint. Suppose, the system operation foo1() terminates in a state st and
returns3 for example the value 1. If Set{1,2}->any() is evaluated to 1, then st
would conform to the post-condition but does the same state conform if 2 is non-
deterministically chosen by the evaluation algorithm instead of 1? It seems the
only thing that can be concluded from the OCL semantics, is, that all post-states
in which foo1() returns a value different from 1 and 2 do not conform to the
post-condition. It remains an open question if this indeed completely captures
the meaning of that constraint.

The next example is a slight variation of the last one.

context Foo :: foo2():Integer
post: if Set{1,2}−>any() = Set{1,2}−>any()

then result = 1
else result = 2
endif

2 Sometimes, any() is used with a second argument of type Boolean that serves
as a guard. Note, that terms of the form src->any(guard) can be rewritten to
src->select(guard)->any().

3 The return value of an operation is represented in post-conditions by the predefined
variable result.
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Would this specification allow a post-state where foo2() returns 1? One could
argue ‘yes’, because it is possible to find among all non-deterministic evaluations
for both any()-terms such an evaluation where the if-condition is evaluated to
true.

Analogously, one could argue for conformance of a post-state with return
value 2, because an evaluation could be found where the if-condition is evaluated
to false. This would require that the two any()-terms are evaluated differently,
for instance the first to 1 and the second to 2.

A conformant state with return value 2, however, would contradict the funda-
mental logical law that equality is a reflexive relation. Note, that the if-condition
is of form X = X and most logics allow to simplify this to true. Consequently,
the if-then-else expression would collapse to result = 1, which would not
allow 2 as a return value.

2.1 Current Tool Support for any()

Current tools for OCL (see [5] for an overview) have either not implemented
the any() construct (a sign that non-deterministic constructs are not well-
understood yet) or have implemented it in a way which contradicts basic and
widely accepted laws in logic.

For instance, as one of the few tools that can handle any(), OCLE [6] evalu-
ates the expression Set{1,2}->any() = Set{1,2}->any() always (!) to true
whereas Set{1,2}->any() = Set{2,1}->any() is always evaluated to false.
This contradicts the law that for a set the ordering of the elements is not im-
portant; the term Set{1,2} should denote the same set as Set{2,1}.

Probably, the authors of OCLE have understood the non-determinism of the
evaluation function in OCL in such a way, that the decision, which among all
possible evaluations should be chosen, can be made by the tool. But such a
setting would give one tool the freedom to confirm the conformance of a state to
a constraint while another tool comes to the opposite conclusion for exactly the
same state and the same constraint. Finally, the meaning of an OCL constraint
(the decision which of the system states conform to it), could depend entirely
on the tool that is used to process that constraint!

3 Non-determinism Versus Under-Specification

In order to understand the construct any() offered by OCL it is helpful to con-
centrate on the usage of OCL as a contract specification language. A contract [7]
for a system operation describes its behavior in terms of pre- and post-conditions.

3.1 Constructive Versus Restrictive Languages

Contract specification languages can be classified into two groups. The classifi-
cation is based on the technique in which post-conditions are formulated (the
formulation of pre-conditions is much more uniform than for post-conditions and
relies always on a dialect of predicate logic).
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Languages belonging to the first group, constructive specification languages,
provide pseudo-code for the formulation of the post-condition. The pseudo-code
allows specification of the operation’s behavior in the form of an algorithm. In
other words, the transition of the system from the pre-state to the post-state is
given by the sequential, conditional (and sometimes also parallel) composition of
more atomic state-transitions. The pseudo-code often resembles imperative pro-
gramming languages with their basic control structures (assignment, sequential
and parallel execution, if-then-else, loops). Two of the most prominent exam-
ples of constructive specification languages are Abstract State Machines (ASM)
and B. The specification given in the post-condition is called update in the ASM
terminology and generalized substitution in B.

Languages of the second group, restrictive specification languages, offer for
the formulation of the post-condition basically the same formalism as for the
pre-condition. In such languages, a post-condition restricts the set of possible
post-states. The intention is not to describe how the post-state is ‘constructed’
from the pre-state (even if this is possible in some situations as our examples will
show). Nevertheless, it is possible to specify in the post-condition how the post-
state is related to the pre-state. For that reason, restrictions can be formulated
on the value of the state variables in the post-state as well as in the pre-state
because all such languages allow the post-condition to refer to both pre- and
post-state. For example, in OCL, att1 > att1@pre means that the value of
att1 in the post-state must be greater than its value in the pre-state.

Well-known examples for restrictive specification languages are Hoare-Triple,
Dynamic Logic, Eiffel, Java Modeling Language (JML), and Z.

Non-deterministic constructs play an important role in constructive lan-
guages, but they cannot, as seen in the last section, be naively integrated into
restrictive languages. A comparison between constructive and restrictive spec-
ifications helps to uncover the intended semantics of the any() construct. We
start with a tiny specification that is both given in B and in UML/OCL.

3.2 A Motivating Example

Figure 1 shows part of a Dispatcher-Depot scenario. A depot is a place to tem-
porarily keep trains (e.g. during the night). For the purpose of our example,
it is sufficient to know the number of trains which are currently at the depot
(indicated by no). The task of a dispatcher is the management of depots, es-
pecially the dispatcher has to choose a depot where to place incoming trains
(operation addTrain()). We assume a dispatcher to manage only two depots
(d1,d2), furthermore we abstract from the fact that real world depots have a
limited capacity.

Figure 1 shows in its left-hand side a formalization of the Dispatcher-Depot
example written in B whereas the right-hand side formalizes the same scenario
using a UML/OCL specification.

The B specification starts with the description of train depots whose states
are encoded by the state variable no of type Integer. The state of a dispatcher
is given by the state variables d1 and d2 of type Depot. The specification of
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Machine Depot
Variables no
Invariant no ∈ Z

Machine Dispatcher(Depot)
Variables d1, d2
Invariant d1,d2 ∈ Depot
Operations
addTrain() �
PRE true
THEN

IF no(d1) < no(d2)
THEN no(d1) := no(d1) + 1
ELSE no(d2) := no(d2) + 1
END

context Dispatcher :: addTrain()

pre: true

post: if d1.no@pre < d2.no@pre
then d1.no = d1.no@pre + 1 and

d2.no = d2.no@pre
else

d2.no = d2.no@pre + 1 and
d1.no = d1.no@pre

endif

Fig. 1. Constructive and restrictive specification in B and OCL

the operation addTrain() can be read as follows: It is always possible to invoke
addTrain() (precondition is true) and upon termination of addTrain(), the
number of trains in depot d1 will be increased by 1 if d1 had less trains than d2
in the pre-state, otherwise the number of trains in depot d2 is increased by 1.

The post-condition is constructive in the sense that it prescribes the behavior
of addTrain() in an algorithmic way. Note, that the operator := has to be
read as assignment and thus the ordering of its arguments is crucial. In the
line no(d1) := no(d1) + 1, the value of the state variable no for d1 (left-hand
side) is updated with the value of this variable in the pre-state increased by one
(right-hand side). The B specification also ensures that the number of trains is
increased only for one of the two depots d1, d2; the number of trains in the other
depot remains the same.

In the UML/OCL formalization, the declarations of the state variables are
given in form of a UML class diagram. The lower part shows a restrictive specifi-
cation of addTrain() written in OCL. The post-condition is structured the same
way as the post-condition in the constructive B specification (if-then-else).
Both specifications only differ in the then/else branches:

For example, the line d1.no = d1.no@pre + 1 is not to be read as an as-
signment but just as a restriction that the state-variable no of d1 has in the
post-state the same value (=) as in the pre-state but increased by one. Note,
that in contrast to the assignment operator used in the constructive B specifi-
cation, the ordering of the arguments in the equality does not matter: the line
d1.no@pre + 1 = d1.no would have expressed exactly the same.

There is another difference between constructive and restrictive specifica-
tion that is illustrated in this tiny specification: The then-branch of the post-
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condition, for instance, covers the case where a train is added to the depot d1
whereas depot d2 remains untouched. If the latter fact is important (here it is,
because an implementation of addTrain() would not be correct if it would, say,
increase the number of both depots) it must be explicitly mentioned in the OCL
specification (d2.no = d2.no@pre) whereas this is expressed in the B specifi-
cation automatically. For a deeper understanding of this problem (in literature
known as the Frame problem) the interested reader is referred to [8].

3.3 Motivation for Non-determinism

The specification of addTrain() shown above is extremely detailed in the sense
that for any given pre-state, the specification allows exactly one post-state. At
a first glance, such specifications seem superficial because the implementation
of the operation could have been given directly. This argument ignores the fact
that the implementation and specification of a system usually reside on different
levels of abstraction. An actual implementation for addTrain() would most
likely use a much more detailed model of the system than would be derived by
a refinement of the shown model. However, we use the term implementation in
the rest of the paper as a synonym for the set of concrete pre-/post-state pairs
that represent the behavior of the operation for the abstraction level given by
the class diagram.

Normally, specifications are not as detailed as for addTrain() and inten-
tionally leave more freedom to the implementations. Then, only a more liberal
version of the specification would be appropriate, for example, that upon ter-
mination of addTrain() the number of trains of exactly one depot should be
increased by one. This specification is less detailed because it does not prescribe
which of the two depots will change its number of trains. Such a more liberal
version can be easily formalized by a restrictive specification:

context Dispatcher :: addTrain ()
pre: true
post: d1.no + d2.no = d1.no@pre + d2.no@pre + 1 and

(d1.no = d1.no@pre or
d2.no = d2.no@pre)

This OCL specification (basically) says that the sum of no for d1 and d2 is in
the post-state increased by one compared to the pre-state.

How can this be expressed in a constructive specification using pseudo-code?
If the specification language would only offer the constructs known from impera-
tive programming languages, one had to decide which depot has to be taken (as
in fig. 1). In order to cope with less detailed specifications, constructive specifica-
tion languages offer constructs that allow a non-deterministic choice from a set of
possible executions paths. The language B, for instance, offers CHOICE-OR-END as
one construct to express non-determinism. The new specification for addTrain()
could be expressed as follows:
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Operations addTrain() �
PRE true
THEN

CHOICE no(d1) := no(d1) + 1
OR no(d2) := no(d2) + 1
END

The meaning of the revised addTrain() specifications is best understood
by evaluating them in a given pre-/post-state pair. As an example, the state
pair (S1, S2) where S1 = (no(d1) = 2, no(d2) = 2) and S2 = (no(d1) =
2, no(d2) = 3) has been chosen.4 Does this state transition conform to the two
post-conditions?

Conformance to OCL Specification. The answer for the OCL specification
is ‘yes’, because the state pair meets all restrictions made in the post-
condition. Note, that the OCL specification would allow for the same pre-
state also the post-state S2 = (no(d1) = 3, no(d2) = 2).
If at least two post-states for the same pre-state are possible, then the be-
havior of a correct implementation cannot be predicted. In such cases, the
OCL constraint is called an under-specification of the operation’s behavior.

Conformance to B Specification. The answer for the B specification is also
’yes’, because the construct CHOICE allows all implementations that realize
the behavior given in one of the branches of CHOICE.
As for the OCL specification, the post-state S2 = (no(d1) = 3, no(d2) = 2)
would also be allowed. Both state transitions are possible due to the non-
determinism of the construct CHOICE.

3.4 Mixing Restrictive and Constructive Specification Styles

Constructive specifications (illustrated above with a B specification, but another
language such as ASM could have been used the same way) use pseudo-code to
specify the behavior of operations in an algorithmic way. As seen in the first
example, the behavior of an operation can easily be described by a constructive
specification that leaves no room for variations among the implementations of
the operation. If an equivalent specification should be given in a restrictive spec-
ification language such as OCL, then the Frame problem has to be addressed,
which can result in a considerable explosion of the specification size.

On the other hand, constructive languages need constructs such as CHOICE
to allow variations among possible implementations. In the case of the CHOICE
construct, an implementation is seen to be correct if it correctly implements one
of the branches.

Restrictive specification languages can easily express variations among the
implementations by a weaker post-condition; this technique is called under-
specification.

4 Only the relevant part of the system state is given here.
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Machine Train

Machine Depot(Train)
Variables ct
Invariant ct ⊆ Train

Machine Dispatcher(Depot)
Variables d1, d2
Invariant d1,d2 ∈ Depot
Operations
sel ← selectTrain() �
PRE ct(d1) ∪ ct(d2) �= ∅
THEN

ANY t WHERE
t ∈ ct(d1) ∪ ct(d2)

THEN sel := t
END

context Dispatcher ::

selectTrain():Train

pre: self.d1.ct−>
union(self.d2.ct)−>

notEmpty()

post: result =
self.d1.ct−>

union(self.d2.ct)−>any()

Fig. 2. Usage of any() in OCL

The construct any() offered by OCL can be seen as an attempt to combine
the strengths of both specification paradigms. Thanks to the any() construct,
an OCL specification can have the same structure as constructive specifications
written in B, which can make them better understandable compared to equiva-
lent, purely restrictive specifications.

The usage of any() in OCL is illustrated by a slightly extended version of the
Depot-example. As shown in fig. 2, the trains at the depot are represented by
a state-variable ct (in UML represented by an association between Depot and
Train). The value of state variable no could be computed now as the cardinality
of the set of trains denoted by ct and is, thus, omitted.

We consider a new operation selectTrain() on Dispatcher whose intended
behavior is to select one train from one of both depots. It is assumed that
selectTrain() is only invoked in a state in which at least one depot has a
train.

The B specification formalizes this informal specification in a natural way.
The pre-condition encodes the availability of at least one train. In the post-
condition, the return parameter of selectTrain() is declared by the variable
sel. Moreover, an element t is selected non-deterministically from the set of
available trains (this is done using the ANY-WHERE construct which is a generalized
version of CHOICE) and then assigned to the return parameter sel.

The OCL specification has exactly the same structure. Instead of declaring a
variable for the return parameter, OCL uses the predefined variable result. The
post-condition states, that the value of result must be equal to self.d1.ct->
union(self.d2.ct)->any(), which can be read as a non-deterministically cho-
sen element from the set of trains available in depot d1 and d2.
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Note, that the post-condition had to address the frame problem in order
to become equivalent with the specification given in B. This could be done
by extending the post-condition with ... and self.d1 = self.d1@pre and
self.d2 = self.d2@pre ... We have suppressed this part of the OCL post-
condition here because it would distract us from the important part of the post-
condition and our conclusions can already be drawn from the given version of
the post-condition.

The semantics of both specifications is again best investigated with a concrete
state transition. Let selectTrain() be invoked in a state where depot d1 has
two trains t1,t2 and the depot d2 is empty. For the post-state, selectTrain()
is assumed to return train t1.

This state-transition would clearly conform to the B specification. Analo-
gously to CHOICE, the ANY-WHERE construct allow all implementations which
conform to one of the given choices (the state transition has taken the choice to
assign train t1 to variable t).

The conformance to the OCL specification depends on the evaluation of
the equation result = self.d1.ct->union(self.d2.ct)->any(), which can
be simplified in the current situation to t1 = {t1,t2}->any(). According to
the official semantics of any(), this can be evaluated to both true and false
depending on the non-deterministic evaluation of {t1,t2}->any() to t1 or t2.

The example suggests the following intended semantics of any(): A state (or
state-transition) conforms to a constraint constr containing any() if and only
if among all alternatives for the evaluation of the any()-subterm there can be
found at least one, such that the evaluation of the constr would result in true.
Such a semantics would directly correspond to the semantics of the ANY-WHERE
construct in B.

4 Improved Semantics for any() in OCL

Despite the clarification made in the last section on the role of any() in OCL
specifications, the fundamental problems with the formal semantics of any()
as described in section 2 are not fully solved yet. This section describes two
approaches to overcome these problems.

4.1 Turning eval into an Evaluation Relation

The intended semantics of any() could be formalized by turning the evalua-
tion function eval into an evaluation relation evalr . On deterministic constructs,
the relation evalr is exactly defined as the function eval . However, when the
evaluation of a non-deterministic subterm allows multiple, non-deterministically
chosen variants, the relation evalr results in all variants. This is possible because
evalr is a relation and not a function like eval which has to decide for one of the
variants. A state conforms to a constraint if and only if its evaluation in that
state by evalr yields at least for one variant the result true.

Although evalr formalizes the intended semantics of non-deterministic con-
structs, it has some deficiencies that prevent its adoption in practice.
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constr(set->any()pos)

⇓
(set->isEmpty() and constr(undefpos)) or set->exists(x| constr(xpos))

Fig. 3. Substitution of any() by deterministic constructs

Firstly, the evaluation of a constraint in a given state can become exponen-
tially complex if non-deterministic terms are nested. Note, that the evaluator
had to handle all possibilities for an evaluation instead of just one result in case
of deterministic evaluation.

Secondly and more important, evalr breaks with the traditional way in logic
to define the semantics of specification languages. As illustrated in section 2
with the foo2() example, by adopting the evalr semantics for OCL, we would
sacrifice common basic logical laws, for instance that = is a reflective relation
so that expressions of form X = X can be simplified to true. Consequently, we
would lose the tool support gained for OCL due to the fact that OCL is based
on first-order logic.

4.2 Transformational Approach

The second proposal to define a semantics for any() is in terms of a transfor-
mation from non-deterministic specifications to deterministic ones for which the
official OCL semantics can be applied. Thus, the drawbacks of the evalr proposal
do not apply here.

However, the transformational approach has some other drawbacks. The re-
sulting formula is more complex than the original one.5 A second drawback
is that the transformation is not always applicable. Fortunately, this seems to
be not a serious restriction in practice and the transformations can handle, for
instance, all occurrences of any() in the UML metamodel.

The Algorithm. As pointed out in the evalr approach, the intended meaning
of non-deterministic constructs is to take all possible evaluations into account.

Let constr be a constraint that contains a term t ≡ set->any() at a position
pos (indicated by constr(tpos)). Following the intended semantics of any() we
know that constr(set->any()pos) is evaluated in a given state to true if and
only if there exists in the evaluation of set an element o such that constr(opos)
is evaluated to true or, in the case that set is evaluated to the empty set, that
constr(undefpos) is evaluated to true. This justifies transformation of the con-
straint as shown in fig. 3.

Informally speaking, it is first tested whether set evaluates to the empty set
and in this case the any()-term set->any() occurring in constr is substituted

5 This is, on the other hand, also an argument for the simplicity and readability made
possible by any().
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by undef or, otherwise, the any()-term in constr is substituted by a variable x
which is introduced outside constr by an exists quantifier over set. Note, that
the subterm set is moved from inside to outside of constr . This is only possible
if set does not contain any variables introduced by iteration operations such as
forAll, exists, select, etc., because the transformation would then result in
a syntactically incorrect OCL term. For example, if the transformation were to
be applied mechanically on the constraint

Set{1,2}->forAll(y| Set{y}->any() > 1)
then it would yield
(Set{y}->isEmpty() and Set{1,2}->forAll(y| undef > 1)) or

Set{y}->exists(x| Set{1,2}->forAll(y| x > 1))
what is a syntactically incorrect OCL term because the variable y in Set{y}

is not declared.
Despite the restricted applicability, the transformation defined in fig. 3 can

successfully be applied on all examples discussed in this paper.

Example foo1():
context Foo :: foo1():Integer

post: result = Set{1,2}−>any()

⇓
context Foo :: foo1():Integer

post: (Set{1,2}−>isEmpty() and result = undef) or
Set{1,2}−>exists(x| result = x)

Since the set denoted by Set{1,2} is not empty, the result of the transformation
could be simplified to
context Foo :: foo1():Integer

post: Set{1,2}−>exists(x| result = x)

and even further simplified to
context Foo :: foo1():Integer

post: Set{1,2}−>includes(result)

Example foo2():
The post-condition for foo2() contains two any()-terms and requires applying the
transformation twice. For brevity, the result of the transformation has already been
simplified (isEmpty() branches have been removed).

context Foo :: foo2():Integer

pre: true

post: if (Set{1,2}−>any() = Set{1,2}−>any())

then result = 1

else result = 2

endif
⇓

context Foo :: foo():Integer

pre: true

post: Set{1,2}->exists(x1| Set{1,2}−>exists(x2|

if (x1 = x2)

then result = 1

else result = 2

endif))
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Note that this specification allows the implementation to return both 1 and 2. The
first case is made possible by assigning x1 to 1 and x2 to 1, the latter case by
assigning x1 to 1 and x2 to 2.

Example selectTrain():
context Dispatcher :: selectTrain():Train

pre: self.d1.ct−>union(self.d2.ct)−>notEmpty()

post: result = self.d1.ct->union(self.d2.ct)−>any()

⇓
context Dispatcher :: selectTrain():Train

pre: self.d1.ct−>union(self.d2.ct)−>notEmpty()

post: self.d1.ct−>union(self.d2.ct)−>exists(x| result = x)

This can be simplified to
context Dispatcher :: selectTrain():Train

pre: self.d1.ct−>union(self.d2.ct)−>notEmpty()

post: self.d1.ct−>union(self.d2.ct)−>includes(result)

5 Conclusion

Currently, the semantics of non-deterministic constructs in OCL is not clearly
defined. The semantic foundation of non-deterministic constructs given in the
official language description can be easily misunderstood, which leaves room for
different interpretations. None of the current OCL tools is able to handle non-
deterministic constructs properly, which is a sign for the poor understanding of
such constructs. In practice, use of non-deterministic constructs is avoided, or
they are only used in cases in which deterministic evaluation is ensured, such as
the transformation of a singleton set to an object.

We have pointed out that non-deterministic constructs are very useful and
even necessary in constructive specification languages such as B or ASM. The
language OCL tried to adopt these constructs without paying attention to the
characterization of OCL as a restrictive specification language. The compari-
son of OCL with constructive languages has revealed the intended semantics of
non-deterministic constructs. As illustrated by examples, specifications in con-
structive languages using non-deterministic constructs can easily be rewritten
in OCL without using non-deterministic constructs. In order to describe non-
deterministic behavior, restrictive specification languages such as OCL offer the
technique of under-specification.

Nevertheless, the non-deterministic construct any() allows the user to write
OCL specification in a more ‘constructive style’. This can make specifications
more accessible for users with a strong background in programming. Since we
were able to formally define the semantics of any() in terms of a code trans-
formation, the construct any() could be easily integrated into other restrictive
languages such as Z, JML, Eiffel. Such an integration could make these languages
more usable and, thus, increase the acceptance of formal methods, especially for
people who are used to describing the behavior of systems in a constructive way.
Seen this way, OCL’s often misunderstood any() construct has brought some
innovation into the realm of restrictive specification languages.
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Abstract. The usage of formal description techniques (FDTs), and
specifically SDL, has arisen as a promising way of dealing with the in-
creasing complexity of embedded real time distributed systems. An im-
portant issue that must be taken into account is the predictability of the
temporal behaviour of this kind of system including communications.
In this sense, RT-CORBA is an interesting alternative as a middleware
for real time distributed applications because, unlike standard CORBA,
it guarantees predictable temporal response on particular invocations to
remote objects and assures a bounded priority inversion. In order to con-
trol the predictability of the complete system we propose the design in
SDL of RT-CORBA. It provides three important results: first, it is pos-
sible to include the behaviour of the communication middleware in the
design of the applications and then the simulation of the whole system
can be carried out; second, the implementation stage is simplified be-
cause the integration of the RT-CORBA middleware allows generation
of code from the design; finally, a schedulability analysis for real time
distributed systems can be included reducing the development time. In
order to apply our proposal we present the design in SDL of a nuclear
power plant simulator.

1 Introduction

Distributed systems are increasingly being applied for critical real-time applica-
tions, in which each task must be guaranteed a priori to meet its timing con-
straints. The majority of applications of this kind are embedded in distributed
architectures, for example control, data acquisition, modern aircraft and car
designs.

Additionally, the development of embedded real time distributed systems
(ERTDSs) is regarded nowadays as a real challenge to engineers. A number of
problems come together: predictable time behaviour, communication, hardware
and technical system failures. In this situation a solution can be found only with
the help of easy-to-use techniques and the corresponding uniform tool support
covering the whole life-cycle.

Object-oriented methodologies are widely used to cope with complexity in
any kind of system, but most of them lack a formal foundation that allows for
the analysis and verification of designs, which is one of the main requirements

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 47–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



48 M. Dı́az et al.

for dealing with the complexity of concurrent and reactive systems. One of the
most important advantages of the formal foundation is the improved consistency
between the models of the different phases. In this sense, Formal Description
Techniques (FDTs) provide the basis for an automated design process, allowing
simulation, validation and automatic code generation from the specifications.
One of the most widely used FDTs is SDL (Specification and Description Lan-
guage) [1]. SDL is an ITU standard and it is currently well supported by com-
mercial tools [2].

In the communication field, Real Time CORBA (RT-CORBA) middleware [3]
has also simplified the development of distributed applications with timing re-
quirements. RT-CORBA specification defines standard middleware characteris-
tics that allow applications to allocate, schedule and control CPU, memory and
networking resources necessary to ensure end-to-end quality of service support.
In order to take this middleware into account in the design stage we propose a
framework in SDL of RT-CORBA 2.0.

However, SDL lacks some semantic aspects (such as a priority model or a
shared resource predictable access model), which are very important for the de-
sign of ERTDSs to avoid unpredictability and issues such as unbounded priority
inversions. Although SDL-2000 has addressed some of these issues it has not
resolved them completely. For example, SDL-2000 [4] presents a queue mecha-
nism to avoid simultaneous accesses, but priority for the accesses must be taken
into account. Additionally, the standard execution model is not predictable ei-
ther. For this reason, we show how to include the RT-CORBA framework taking
into account the extensions proposed for SDL in previous works [5] that assured
predictability in the design level.

Including an RT-CORBA model in SDL allows us to specify the whole system
at the design level and therefore:

– We can simulate the whole system at this stage. In order to do so we need to
include information on the communication platform and we propose a design
model of the predictable CAN communication protocol [6].

– We simplify the integration between RT-CORBA and the SDL generated
code thereby reducing the time of the implementation stage.

– A schedulability analysis can be carried out at this stage.

In this paper we have modelled the main RT-CORBA characteristics: the pri-
ority models (client propagated and server declared), thread pools, mutexes
and the connection management.

The paper is organized as follows: In the rest of this section some comments
about related work and a summary of the main characteristics of RT-CORBA
are described. Section 2 presents a review for the extension proposed in previous
works and used in this paper. Section 3 presents RT-CORBA in the SDL context
to design hard real time distributed applications. Finally, in section 4 we apply
our proposals in a real example based on distributed simulators for nuclear power
plants. This paper finishes with some conclusions and future lines of work.
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1.1 Related Work

A lot of work focuses on the integration of non-functional timing aspects in
SDL. In [7] an overview of the main weakness of SDL for the development of
real time systems is given. Additionally, in [8] we can see proposals for extensions
to include timing information in SDL. Another line of work in this context
is that of supplementing SDL with load and machine models, such as those
described in [9], that use queuing theory to calculate job and message queuing
times and processor peak and average workloads. [10] presents another extension
to SDL to describe non-functional requirements. In [11] a new approach for early
performance prediction based on MSC specified systems in the context of SDL
is presented.

Other lines deal with design pattern proposals. A design pattern is an SDL
module, which can be used in different contexts for different applications with
only minor modifications [12]. SDL patterns and examples exist for well known
protocols [13]. [12] addresses how to include the timing behaviour of the commu-
nication medium for the protocols for medium access in SDL. A design pattern
is proposed to allow the specification of time critical functionality such as mul-
tiplexers or Quality-of-Service (QoS) schedulers.

In [14] the use of SDL for efficient service creation is addressed. In order
to provide a generic platform for the implementation of future mobile services,
supporting standardized interfaces and manufacturer platform independent ob-
ject [15] proposes the mapping of SDL and CORBA mechanisms.

Finally, the ITU-T Recommendation Z.130 [16] specifies the ITU Extended
Object Definition Language (ITU-eODL), which is used for a component-oriented
development of distributed systems. This recommendation includes an IDL-SDL
mapping, but RT-CORBA is not considered.

1.2 Real-Time CORBA

CORBA is a communication middleware that allows the communication of ob-
jects developed in different programming languages and running on different
hosts or operating systems in a transparent way [18]. These objects (servers)
define interfaces with operations provided to the clients. Clients only use these
operations and there is no difference between invocations to local objects and in-
vocations to remote objects because all the communication details are managed
by CORBA.

Temporal predictability is a main factor in the development of real-time ap-
plications. However, standard CORBA implementations are not suitable for real-
time because they only support best-effort capacities in the communications and
there are no guarantees about the temporal response on particular invocations to
remote objects. So the solution is to use ORBs supporting the Real-time CORBA
specification. Real-time CORBA provides mechanisms that allow configuration
and control of processor resources, communication resources and memory re-
sources. The following points show the main RT-CORBA features:
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Native and CORBA priorities: RT-CORBA applications can use CORBA
priorities to hide the heterogeneity of native priorities of the operating systems.

Server declared and client propagated priorities.

Thread pools: The pools allow the pre-creation of threads in such a way
that a thread manages each invocation on a particular object.

Mutexes: The standard RT-CORBA synchronization mechanism that per-
mits priority inheritance and priority ceiling protocols

Protocol properties: The underlying transport protocol used by a par-
ticular Object Request Broker (ORB) (such as IIOP - TCP/IP [18]) can be
configured by RT-CORBA to benefit from special features, such as ATM virtual
circuits, etc.

2 Priority Specification in SDL

In order to model real time aspects of RT-CORBA in SDL we briefly describe
the extension proposed in previous works [5].

The main issue is the inclusion of the priority concept for transitions. Al-
though, some environments [2] give extensions to incorporate priorities in the
processes, we propose to assign priorities to the transitions of the processes. In
this case, the process priority depends on the transition that is being executed
in each time instant. Figure 1 shows how to specify this extension, adding in a
comment symbol with priority x, where x is the priority level.

This extension allows us to define a predictable execution model based on
a fixed priority preemptive scheduling to incorporate a real time analysis of
the implementations derived directly from an SDL design. More details and the
formalization of this extension can be studied in [17].

Block blck 1(1)

Process1 with priority  P

ExitCan

Exit

ExitRespuesta

InCan
In

in_ev1, in_ev2

Process Process1 1(2)

with 
priority p1

 Wait with priority p2

in_ev1 in_ev2

 task1  task2

Fig. 1. Priority Specification
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3 An SDL Model for RT-CORBA

In this section we present the design in SDL of RT-CORBA addressing important
real time characteristics such as priority models, mutexes and thread pools.

3.1 Basic CORBA Execution Flow

In CORBA applications there are communicating objects located in different
hosts. Any application can play the role of server or client depending on applica-
tion requests. In this section we describe the basic execution flow of one simple
client-server application.

In fig. 2 we can see the basic execution flow between a client and a CORBA
object in a general request of type: result = object->operation(args).

The first step for a client invocation is to obtain a reference of the target
object. This reference can be obtained in different ways (Naming Service, fac-
tories, etc.) and can be performed in the first stages of the application without
penalty for real-time applications. With this reference the client can perform the
invocation on the target object. For this, the ORB uses a stub class instance (au-
tomatically generated) representing the target object in the client space address.
This proxy has the same interface as the remote object. So, the client application
does not know anything about communications and uses the methods provided
by the proxy, which have the same signature as the remote object. The stub
is responsible for data packaging/unpackaging and the use of ORB operations
to transmit the invocation to the ORB server by using an instantiation of the
GIOP protocol (such as IIOP or CANIOP) [18].

In the server space address, the invocation is caught by the ORB, which
uses the information contained in the request to locate the object adapter as-
sociated to the target object, and finally the object adapter performs the in-
vocation on the target object through a skeleton class equivalent to the stub
class. If the operation has output arguments or a return value, the results are
transmitted to the client using the same connection (GIOP connection are bidi-
rectional).

Fig. 2. General CORBA invocation
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The previously described process used in standard CORBA ORBs has several
problems in real-time systems related to temporal unpredictability [19]. The
main inconvenience is related to the time response of the request. Standard
CORBA ORBs cannot guarantee an upper limit in the invocation response time.
In particular, CORBA does not define any connection policy between the server
and the client and the connections can be shared with lower priority clients. So,
higher priority clients can be delayed by lower priority clients, falling into priority
inversions. Additionally, the connection establishment time is not bounded and
on the server side perhaps there may not be resources available for the request
or it may be delayed by another lower priority request.

3.2 Combining RT-CORBA and SDL

Most of these problems can be solved by using RT-CORBA, but it lacks real-time
analysis methodology and tools. In previous works we have defined extensions,
which enable us to perform real-time analysis in SDL systems. Our solution is
based on providing an SDL model for RT-CORBA, which can be used by the
user and combined with the SDL model of the user applications and commu-
nication platform. This way, the whole application can be analyzed in the first
stages of the design and code can even be generated using the corresponding
tools.

In fig. 3 we can see the SDL model for a generic CORBA application. This
model represents a basic CORBA system with one CORBA object (contained
into Apl2) and one client (Apl1). Additional SDL blocks represent the client stub

system CLSERVBAS 1(1)

signal method1,method2,methodn;
signal ReceiveMessage,SendMessage,
SendReply,NewMessage,AnswerMethod1,AnswerMethod2,
AnswerMethodn,CANMessage,Result;

Apl1

ClientORB

Additional channels are
possible

GIOP ServerORB

Apl2

CommunicationPlatform

ClApl
method1,
method2,
methodn

AnswerMethod1,
AnswerMethod2,
AnswerMethodn

idch1
SendMessageReceiveMesage

idch2
NewMessageSendReply

idch1
SendReply NewMessage

idchn
NewMessageSendReply

idch2
SendMessageReceiveMesage

idchn
SendMessageReceiveMesage

SrApl

Result

method1,
method2,
methodn

ComGp
CANMessage

Fig. 3. RT-CORBA modelled with SDL
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(ClientORB) and the server code (ServerORB) including the object adapter and
skeleton. The communication platform and GIOP are other SDL blocks. All the
blocks are interconnected with signals such as methodX for the different services
or the pairs SendMessage/ReceiveMessage and SendReply/NewMessage, which
are based on the CORBA GIOP protocol. This way, we can represent a CORBA-
based system with SDL and we benefit from all SDL features. In particular, we
can model the main RT-CORBA features, obtaining analyzable RT-CORBA
systems.

When an invocation from Apl1 is initiated (for example method1), the ap-
plication sends a method1 signal, which is caught in the ClientORB block. This
block is responsible for the data packaging, sending a signal SendMessage, which
represents an equivalent GIOP message. The GIOP block is now responsible for
data transmission between the nodes of the application. In particular, it is re-
sponsible for the interaction with the communication platform (block
CommunicationPlatform). Finally, the invocation is transmitted to the target
ServerORB with the SDL signal NewMessage, where the unpackaging of the pa-
rameters is performed and transmitted to Apl2. If the invocation has a response,
an inverse path is followed from Apl2 to ServerORB, and from ServerORB to GIOP
with the SendReply signal. This signal is caught by ClientORB and the response
is transmitted to Apl1.

For a concrete application we only have to modify some of these provided
generic blocks using some simple rules, which can be followed by the user or
some automatic tool, thereby obtaining an SDL representation of the system.
The modification includes the GIOP block, which has to be modified according
to the RT-CORBA implementation used (such as TAO [21] or ROFES [22]),
the communication platform to be substituted for the real ones (such as CAN-
IOP [22] or ATM) and blocks ClientORB and ServerORB, which have to be
adapted to the real blocks whose code is automatically generated by the IDL
compiler depending on the CORBA interfaces.

We have to point out that the user or tool only has to perform small modi-
fications to the proposed basic model such as the stub code or the name of the
methods. Other blocks are provided by the environments or tools such as the
RT-CORBA implementation. And other aspects such as interconnection between
blocks, signals, etc. are left unchanged.

In the following subsections we show how the main RT-CORBA features
(priority models, thread pools, mutexes, etc.) are modelled and we detail the
CORBA-SDL mapping process for these features.

3.3 Honoring Priorities

A primary problem related to distributed real-time applications is related to
the different priority schemes on different operating systems, priorities not hon-
ored in the server, etc. As we have seen, RT-CORBA provides mechanisms to
overcome these inconveniences thanks to the client propagated and the server
declared models. In this section we present a model of these features in the real-
time extension of SDL. A considerable part of the SDL model for both (client
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block ClientORB 1(1)

Service1

Service2

Servicen

idch1
ClApl

ClApl

idch2

ClApl

idchn

S1id1 SendMessage

ReceiveMessageS1Apl

AnswerMethod1

method1

S2Apl

AnswerMethod2

method2 S2id2 SendMessage

ReceiveMessage

SnApl

AnswerMethodn

methodn
Snidn SendMessage

ReceiveMessage

Fig. 4. Services mapping

propagated and server declared) is similar. So, we present the common part and
then we explain the differences between them.

On the client side, the interaction between the application and RT-CORBA
is performed in the ClientORB block. In this block, we use an SDL process for
each CORBA service (that is methods in the interface). This way, when the
application performs a request for a service, this request is caught by the cor-
responding SDL process through signal methodX. The result of this interaction
is the creation of a new SDL signal named SendMessage, which is sent outside
the ClientORB block. Signal SendMessage represents a generic CORBA mes-
sage used by the CORBA GIOP protocol to start new requests. Finally, it is
very possible that the requests have an associated response. So, the services
have to process the signal ReceiveMessage, which contains the response to the
request. The response is processed and transferred to the application via signal
AnswerMethodX.

Figure 4 shows generic RT-CORBA services mapped into SDL processes. In
a concrete application the generic names have to be changed (by some auto-
matic tool) showing the names of the real services. This includes the names of
the services and signals methodX and AnswerMethodX. Signals NewMessage and
ReceiveMessage are generic and they are related to the GIOP protocol.

Inside the processes representing the services (Service1,. . . ,Servicen) we
have to model additional aspects such as the connection establishment or pa-
rameters packaging and we have to delegate the performing of the request to the
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process Service1 1(1)

est

Method1(args)

with priority x

ConnectionEstablishment(idch)

Packing(’method1’,args,dat)

SendMessage(dat) via idch −

ReceiveMessage(datret)

with priority y

Unpacking(datret,res)

AnswerMethod1(res)

Fig. 5. Services mapping

GIOP block (via SendMessage signal). Also, we have to process the response to
the request (via ReceiveMessage).

Figure 5 shows one of these services. The service process is waiting for two
signals: Method1 and ReceiveMessage. Method1 is received when the application
performs a new request. On the other hand, ReceiveMessage is received like a
response after a request is transferred to the server.

When a new request is initiated (Method1 received), the stub is responsible
for the connection establishment. This procedure can be different depending on
the RT-CORBA implementation used. After this, the data items related to the
invocation are packaged and finally a new signal is generated, SendMessage, with
all the required information for the successful completion of the request.

The services can wait for the signal ReceiveMessage. This signal is received
as a response to a previous SendMessage. The steps are the opposite to the
Method1 signal. The response is unpackaged and sent to the application via the
AnswerMethod1 signal.

The server side is more complex because we have to consider additional fac-
tors such as the object adapter (POA) and its interaction with skeleton and
servant. In this case we have a process for each POA existing in the application.
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block ServerORB 1(1)

signal Sskeleton;

POA Skeleton

User can create
the neccesary POAs

idch1 idch2

idch
IdP

NewMessage

PSk

Sskeleton

Skid1

SendReply

Skid2

SendReply

Skidn

SendReply
idchn

SkSv

method1,
method2,methodn

Result

SrApl2

Fig. 6. Server side blocks

POAs are connected to the skeletons and they are connected to the servants
representing the CORBA objects (contained in the application). Figure 6 shows
these elements and the interaction between them.

The POA is waiting for NewMessage signals (received from service processes).
After this, the POA identifies the target object, transferring the request to the
corresponding skeleton process, which invokes the method from the servant. If
the request has an associated response, this response is transmitted back to the
service process through the SendReply signal. After the connection between the
stub and the skeleton, the POA is no longer needed for the request and client
and server can communicate directly.

Until this point, there are no differences between the client propagated model
of RT-CORBA and the server declared model. The POA sets the difference
between the two models and their mappings into SDL:

Server declared model: Invocations in this model are executed with the
CORBA object priority. This model is implicitly covered by the real-time
extension of SDL and we do not need modifications or extensions of the
model. The SDL transitions associated to the object are executed with the
object priority.

Client propagated model: In this model the priority of the clients must be
honored on the server side. This priority model involves dynamic changes
in the priorities from the SDL point of view and it is not covered by the
previous work. The transitions associated to the different methods of the
servant can be executed with different priorities depending on the client.

Thus we need some extensions to the SDL model in the client propagated
model. In particular, we propose a new primitive: ThePriority , which changes
the priority associated to a signal, which enables a transition associated to a
method and the priority is set to the desired value. This primitive is equivalent
to the attribute Current::the priority of RT-CORBA and this way it does not
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process POA 1(1)

exported CreatePriorityModelPolicy 

CreatePriortiyModelPolicy(Pollicy)

est

NewMessage(dat) with priority x

IdentifyDestination(dat,dest,header,body)

dest=’skeleton’ We must compare with
the existing skeletons

Sskeleton(body)

−

T

Fig. 7. Object adapter

require any change for the code when it is generated from SDL tools. That is, it
follows the RT-CORBA programming model.

Figure 7 shows the SDL process associated to a POA. The change of the
priority model is performed in the POA creation with the procedure CreatePri-
orityModelPolicy. Additional CORBA policies can be created with equivalent
methods.

After this, the POA is waiting for new messages (via NewMessage signal)
from the GIOP block and when some of these messages arrive, it has to locate
the target skeleton delegating the request to it. The target identification is per-
formed in the IdentifyDestination procedure and it is very dependent on the
implementation. In fact, one quality factor of the RT-CORBA implementation
can be found here. Thus, good implementations identify target objects in con-
stant time while bad implementations can require lineal or polynomial times.
After this identification, a signal for the target skeleton must be generated. The
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process Skeleton 1(1)

DCL body,args,dat Stream;
DCL method SIG;

exported CheckPriorityModel

est

Sskeleton(body) with priority x

Unpacking(body,method,args,dat)

CheckPriorityModel(method,dat)

method=’Method1’ We must compare with
every object methods

Method1(args) −

Result(res) with priority y

Packing(res,dat)

SendReply(dat) via thechannel

Fig. 8. Object adapter

POA must choose the target skeleton and generate the suitable signal. We must
point out that the order of the NewMessage signals is not the responsibility of
the POA. Instead, other blocks of our model (GIOP or communication platform)
must adequately order the invocations attending to the priority of the requests.
The POA only recovers these ordered signals and transmits them to the skele-
tons. So, at this point we can have priority inversion sources bounded by the
quality of the RT-CORBA implementation.

Finally, the response to the client is not performed through the POA. Instead,
the information sent to the skeleton allows us to send the response from the
skeleton honoring the RT-CORBA programming model.

Skeletons (symmetric to stubs) are represented with processes waiting for
new requests. Figure 8 shows a generic skeleton with two transitions. First tran-
sition (Sskeleton) is related to new requests on a servant. When a new request
is received, the skeleton has to unpack the data stream. For this, it uses the
Unpacking procedure (depending on RT-CORBA implementation) obtaining in-
formation such as the method to be invoked, parameters and additional infor-
mation (such as client priority). The next step is to check the priority model
used.

Figure 9 shows the CheckPriorityModel procedure. This procedure deter-
mines the priority model used: server declared or client propagated. If the desired
model is the client propagated model, we have to use the ThePriority primitive
to set the priority of the transition. For this, we use the name of the method and
the priority of the client, which has been extracted in the ExtractPriority pro-
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;FPAR
in method SIG,
in dat Stream;

procedure CheckPriorityModel 1(1)

DCL integer pri;

PriorityModel=’CLIENT_PROPAGATED’

ExtractPriority(dat,pri)

ThePriority(method,pri)

true

false

Fig. 9. CheckPriorityModel procedure

cedure. As noted before, this primitive is equivalent to the Current::the priority
attribute, so we maintain the RT-CORBA programming model.

In the case of the server declared model we do not need additional actions
because this model is implicit in the SDL real-time extension. For our model, the
CheckPriorityModel is the only difference between the server declared and the
client propagated models. After checking the priority model, the skeleton selects
the target method invoking it with the extracted parameters. The invocation
is performed by means of a signal with the name of the method (fig. 8). The
response in the skeleton is caught by the Result signal. This signal is transmitted
by the servant process after the method execution. The following steps are the
packaging of the response with the Packing procedure and the generation of a
new signal for the response: SendReply, which is transmitted to the GIOP block
and from the GIOP block to the client.

Figure 10 shows an SDL process representing a CORBA object servant. The
servant process has one transition for each method of the CORBA interface.
These transitions use the extension “with priority” of our model, executing the
transitions with the previously established priority (server declared or client
propagated). The next and most important step is the execution of the method.
For analysis purposes, it is sufficient to indicate the worst case execution time of
the method although it is possible to model the method itself. After the execution
of the method, the results of execution are sent to the skeleton generating a
Result signal.
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process <<block Apl2>> Servant 1(1)

DCL args,res Stream;

est

method1(args)

with priority x

method1(args,res)

Result(res)

−

method2(args)

with priority y

method2(args,res)

methodn(args)

with priority y

methodn(args,res)

Fig. 10. Servant process

3.4 Multithread Servers

In the previous section we described the design in SDL of the RT-CORBA pri-
ority models without taking into account multithreading or shared resources.
Multithreading is a necessary feature for real-time distributed systems. Further-
more, we can avoid some priority inversion sources executing higher priority
requests instead of waiting for unresolved lower priority requests. On the other
hand, contention resources management is an important necessity in real-time
systems.

Standard CORBA ORBs follow several strategies about multithreading from
ignoring it, to considering it but relying on the ORB for the number of threads to
be created, priorities of these threads, etc. RT-CORBA goes further with thread
pools. With the thread pools the user can completely control the multithreading
behaviour of the application.

Together with multithreading we have to consider mutual exclusion between
distributed objects. Once again RT-CORBA offers us mutexes, which allow us
to obtain mutual exclusion in different parts of the application with bounded
priority inversion.

In our model, multithreading is performed with SDL processes. On the server
side of the application we indicate the maximum number of simultaneous re-
quests that a skeleton can have. Figure 6 showed the processes associated to
skeletons. So, we can have simultaneous requests ranging from 1 to n. The SDL
model does not need anything else for multithreading except the blocks, pro-
cesses, procedures, etc. described in the previous section.

The second issue is related to the shared resources. RT-CORBA provides
mutexes with the POSIX semantics, providing three operations: lock, unlock
and try lock. In order to be modelled in SDL, shared data and resources will be
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encapsulated into a special kind of process. It acts as a passive server process
and only uses remote procedure calls (RPC) as its communication mechanism:
they are always waiting to receive RPCs from other processes.

Each of these processes has a priority ceiling assigned, which is the maxi-
mum number of the priorities among all the other process transitions where the
resource is being accessed. In this way we avoid possible priority inversion in
the data access, and blocking time in shared data access is predictable. Mutual
exclusion is also guaranteed, since all the process transitions will be executed at
the highest priority among all the processes sharing the resource.

3.5 Communication Platform

The other features of RT-CORBA are related to connection management: proto-
col properties, connection establishment, private connections, etc. These features
are not taken into account in the client or server and they are modelled into the
CommunicationPlatform block. Even the GIOP block is independent of these
features and it only uses the services provided by the communication platform
block. In order to get predictable real time distributed applications we need the
communication platform also to have this characteristic. In this sense we pro-
pose an SDL design for the CAN protocol [6]. There are in existence RT-CORBA
implementations with instantiations of the abstract GIOP protocol. Specifically,
ROFES is an RT-CORBA implementation including the so called CANIOP pro-
tocol, which uses RT-CORBA on CAN.

In fig. 11 we show block Communicationsystem with the process specifying
the CAN protocol. As we can see in fig. 12, busCAN is waiting for the remote call
of procedure Send, and it will be executed with a ceiling priority to guarantee
that it will not be preempted during the message sending. Send must build the
message meeting the CAN format and send it to the processors.

block CommunicationSystem 1(1)

Communication system is based on
event triggered systems.
Protocol is based on CAN bus.

busCAN
sending

new_message

Intf, int

Fig. 11. Block for CAN bus protocol
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process CANBus 1(1)

exported Send

est

procedure Send

−

Fig. 12. Process BusCan

4 Example: Nuclear Power Plant Simulators

We have applied our proposals to distributed simulators for nuclear power plants
used in different joint projects between the company Tecnatom S.A. and our
research group [20]. The temporal behaviour of these simulators must be pre-
dictable providing stability, robustness, etc. In this section we present the SDL
model of a part of the whole system.

Simulators are exact replicas of the control rooms, taking care of all details,
from physical artefacts such as furniture, control panels, etc. to software, sim-
ulating the applications running in the control room of the power plants. The
kernel of the simulators consists of simulation models with real-time constraints,
which provide the values of the distinct signals and variables needed by the other
hardware and software components. The main purpose of the simulators is to
train the operators of the power plant, enabling them to practice different situ-
ations, ranging from standard situations such as temperature monitoring, valve
manipulation, etc. to the most unusual, including emergency situations.

Tecnatom projects usually include two types of simulators that influence
hardware architecture and the physical infrastructures. The first simulator type
is called Interactive Graphic Simulator SGI ), which uses graphic applications
to train the operators. The second type is called Full Scope Simulator (SAT ),
which is an exact replica of the control room of the power plant.
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system CLSERVBAS 1(1)

signal writeValues,sendChangedValues;
signal SendReply,NewMessage,AnswerwriteValues,AnswersendChangedValues;

CDI

RTCORBA

TRAC SETRU

SGI1 SGI3

SGI2

crt

writeValues

AnswerwriteValues

trt
writeValues

AnswerwriteValues

srt

SendReply

NewMessage

s1rt
sendChangedValues

AnswersendChangedValues

s3rt
sendChangedValues

AnswersendChangedValues

s2rtsendChangedValues

AnswersendChangedValues

Fig. 13. Simulator system in SDL

block RTCORBA 1(1)

CommunicationPlatform

GIOP

StubTRAC

ServerSETRU

StubCDI

StubSGI1 StubSGI3

StubSGI2

ComGp

Message

ApT
AnswerwriteValues

writeValues

tg

SendMessage

ReceiveMessage

sg

SendReply

NewMessage

ApC

AnswersendChangedValues

writeValues

cg
SendMessage

ReceiveMessage

s1g SendMessage

ReceiveMessage
ApS1

AnswersendChangedValues

sendChangedValues

s3g

SendMessage

ReceiveMessage

ApS3

AnswersendChangedValues

sendChangedValues

s2g
SendMessage

ReceiveMessage

ApS2AnswersendChangedValues

sendChangedValues

Fig. 14. RT-CORBA specification for the Simulator
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block StubSGI1 1(1)

ServicesendChangedValues

ServicewriteValues

s1apl

AnswersendChangedValues

sendChangedValues

s1id1
SendMessage

ReceiveMessage

s2apl

AnswerwriteValues

writeValues s2id1
SendMessage

ReceiveMessage

Fig. 15. Stub for SGI1

process ServicesendChangedValues 1(1)

DCL args,datret,dat,res Stream;

est

ReceiveMessage(datret)

with priority 5

Unpacking(datret,res)

AnswersendChangedValues(res)

−

sendChangedValues(args)

with priority 7

ConnectionEstablishment(idch)

Packing(’sendChangedValues’,args,dat)

SendMessage(dat) via idch

Fig. 16. ServicesendChangedValues process
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4.1 RT-CORBA Model

In the modelled subset we have several software applications:

SETRU: kernel of the Tecnatom simulators, providing an execution environ-
ment for the simulation models.

Simulation models: They are responsible for the precise simulation of real
physical components such as valves, sensors, actuators, etc., periodically up-
dating simulation variables that represent the physical components. In our
example the simulation model is called TRAC.

CDI: Application representing the instructor console. It allows the sending of
several commands to the simulator kernel.

SGI: Sheet Displayer Application. It allows the querying of simulation variables
and performs user actions over simulated physical components.

Thus, we have a CORBA server in application SETRU, which provides
several methods to update simulation variables, query simulation variables and
perform user actions. The other applications are CORBA clients using these
services.

Two methods have been modelled:

1. sendChangedValues: This method is used by the clients to obtain modified
variables. In the example, SGI applications use this method.

2. writeValues: This method is used to update variables in the simulator ker-
nel. In the example, SGI, CDI and TRAC use this method to update variables
and simulate user actions.

We are going to use the client propagated model of RT-CORBA to develop
this system. Thus, SETRU creates a CORBA object into a POA with this
RT-CORBA policy and the other applications invoke methods over SETRU
with different CORBA priorities. Following the rules of our mapping, we can
see in fig. 13 the system overview of our application. We have a block for each
application and the additional RT-CORBA block for communication among the
different parts of the system. Figure 14 shows the stub blocks and server SETRU
together GIOP and the communication platform.

We show in fig. 15 the services for SGI1 with two process for the two services
(see 3.3):ServicesendChangedValues and ServicewriteValues. Figure 16
shows the behaviour of process ServicesendChangedValues.

5 Conclusions

One important issue for distributed real time systems is the knowledge of the
temporal behaviour of the communication and we think that it is necessary to
include this knowledge in the design stage. In this paper we have proposed an
SDL model for the communication middleware RT-CORBA. We have addressed
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important aspects for real time applications such as the priority models, shared
resources accesses and multithreading defined in the RT-CORBA specification.
We have presented an SDL model for a predictable communication protocol such
as CAN. An important result of our proposal is the possibility of including a
schedulability analysis in the design stage. It is out of the scope of this paper
but we are currently working on it.

Although the main real time characteristics of RT-CORBA have been
designed in SDL, we are extending our model. Another line of investigation
is related to the development of tools to generate code compatible with the
RT-CORBA specification.
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Abstract. The development of software systems in general and software
components in particular becomes a more and more challenging task. The
key solution for handling the complexity in the development process is
the modeling of software systems and the transformation into imple-
mentation. The authors show an application of OMG’s Model Driven
Architecture (MDA) in the context of component development, where
different languages such as eODL, SDL, CIDL and C++ are involved.
The application of model transformation is based on eODL as a plat-
form independent modeling (PIM) language and CIDL as the platform
specific modeling (PSM) language. We used type based mapping rules to
define the transformation. The paper shows the concrete implementation
of these rules based on MOF repositories as model storage and the use of
Java to perform the transformation actions. The Java technology Meta
Data Repository (MDR) builds the base for an on-demand MOF repos-
itory creation in our approach. The handling of syntax based language
is considered for integration purposes.

1 Introduction

The problem domain for today’s software systems has broadened the scope in
two dimensions. Software systems have become more complex to bridge different
business areas and problems in single business fields. To cope with these new
challenges different approaches were developed. Two of them are in the scope of
this paper.

The component based software development is an approach for modular soft-
ware development. It extends the concept of components from design and im-
plementation, where modules are well known, to the binary software. The com-
position of components takes place during execution time.

Model Driven Architecture (MDA) as an initiative of the Object Management
Group (OMG) centers the software development process on the models and
tackles the different problems of traditional software development processes. The
starting point for activities in MDA are the models, which ensures that the
models are always up-to-date; back propagation from implementation change to
the design model is build-in.

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 68–84, 2005.
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With the technical specification for model storage and access, the Meta Ob-
ject Facility (MOF) builds a good base for model transformation. This enables
the automatic transformation of the design models into implementation (mod-
els). The gap between design and implementation known from traditional soft-
ware development does not appear here.

But the successful development of new technologies cannot be independent
from existing tools and methods. So the step by step integration of MDA based
methods is necessary. Conventional development tools are syntax based. There-
fore the integration has to be on textual syntax. This means new tools have to
start with the syntactical representation of models or have to finish with it. To
reach this the relation between syntax representation and repository MOF has
to be resolved.

Therefore we present an example for a MDA based transformation. In the
context of component based distributed software systems, the CORBA Compo-
nent Model (CCM) defined by the OMG is a concrete technology for distributed
software systems and can be used as a language for PSM. For the modeling of
this kind of system at the abstract PIM level, this paper will use the language
eODL defined by the ITU-T.

We will show the theoretical basis and appropriate languages/tools for an
implementation of this kind of transformation. In the following section transfor-
mation rules at the conceptual level are introduced by an example. Section 3
gives a detailed view on MOF and model repositories usage in Java. As stated
the relation between syntax representation of models and repositories has to be
defined. This is done in section 4. Based on the model repositories, section 5
presents a way transformation rules can be implemented.

2 Transformation Rules – From eODL to CIDL

The complexity of developing large distributed software systems can be reduced
by use of component technology and the MDA approach. By using component
technology the whole system is divided into parts, which reduces the complexity.
Specifying and implementing the different parts becomes easier than trying to
handle the whole system at once. The overall system behavior is a constant
in this process, but the process can be reduced by reusing software in terms
of pre-developed software components, though MDA is not needed for doing
so. The MDA approach introduces a new dimension in software reuse. With
component technology alone, we are stuck to a concrete version/technology of
software components in reuse. However, as we all know technology is changing
over time. This leads to the situation, that at some point in the future your
software system consisting out of a set of software components implemented in
a certain technology, does not fit the current applied technology. Without MDA
you now stop reusing your software components and are forced to redevelop the
components. If we apply MDA here the transformation from the PIM design to
the new component technology or platform has only to be defined.
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PIM

PSM

Fig. 1. Relation between PIM and PSM

2.1 Model Driven Architecture (MDA)

The MDA is a new software engineering approach developed and published by
the Object Management Group (OMG). One fundamental observation in the
evolution of living software systems over the years is that their basic design
models are mostly unchanged. Most changes to evolving software systems take
place only at engineering level, forced by the introduction of new technologies
and platforms.

MDA promotes simply the usage of models for the whole software system
development. To capture the problem of technology evolution MDA defines two
classes of models. The first one is for abstract modelling of the software systems
at the design level. This model class is called Platform Independent Model (PIM).
The second class is related to specific platforms and/or technologies. It contains
mainly engineering aspects of the software system and is called Platform Specific
Model (PSM). Between these two classes of models, MDA defines a relation in
the form of several transformations, which ensure the structural equivalence of
PIM and PSM (see fig. 1).

There are three basic kinds of transformation specification:

– Type based transformation: Rules for transformation define a relation from
concepts in the source Meta-Model to concepts in the target Meta-Model.

– Instance based transformation: Rules for transformation are defined on in-
stances in the actual models: additional information for instance selection is
needed.

– Pattern based transformation: Rules for transformation define a relation be-
tween patterns of instances in source and target model. Concepts of the
Meta-Models can be used to formulate patterns.

Another key issue of MDA is a technology framework for different kinds of
model handling (storage, exchange, mapping of models, etc.). The Meta Object
Facility (MOF) [1] is convenient for this purpose. Historically modeling languages
were defined by abstract grammars. MOF instead defines modeling languages
on the base of so-called Meta-Models. Meta-Models are models (instances) of
built-in MOF concepts. Using this framework the developer can focus more on
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the definition of mappings between models rather than having to struggle with
ordinary model handling. This is due to the fact that MOF comes with a method
for the definition of model classes (Meta-Models) and for the exchange of models
using the XML Metadata Interchange (XMI) [2]. In addition, MOF provides
mappings of Meta-Models to repository interfaces as well. Such a repository
holds all necessary information about model instances.

The above argument is correct for most of today’s component technology. To
show the real application we have to choose concrete Meta-Models for PIM and
PSM. This also leads to the selection of appropriate Meta-Models and notations
for PIM and PSM. One requirement for both is the support of the component
concept as a first class concept. Moreover, the Meta-Model for the PSM should be
part of a well-defined and established component technology. Because the spread
industrial usage is a process consuming several years, the suitable technologies
have traditional syntax based languages for component definition.

2.2 eODL

eODL is a modeling language, which contains components as a first class concept.
Other key concepts are interface, module, signal, data type and concepts for the
description of distributed environments and deployment. Even though eODL
utilizes the data type part from IDL (Interface Definition Language of OMG)
it is not restricted to CORBA based platforms. The data type part from IDL
is here used as an abstract data definition part, which has to be mapped for
different platforms.

The definition of eODL is based on a Meta-Model utilizing MOF. The de-
fined concepts are structured on two dimensions: first, packages are used to
group the concepts according to their origin, so all concepts taken from IDL are
in one package; second, structuring is more on logical level. Inspired by Open
Distributed Processing (ODP) [3], in eODL all concepts are assigned to one of
the following view points:

– computational view point,
– implementation view point,
– deployment view point,
– target environment view point.

Some view points are used here in the same way as in ODP, but eODL also
identifies other view points. They are defined around the development cycle
of software components. So the concepts from deployment view point are only
meaningful for implemented software components and not for CO-Types in the
design stage.

2.3 CCM and CIDL

The CORBA Component Model [4] is a standard published by the OMG. It pro-
vides the Meta-Model for CORBA components and the technology and runtime
environment for components developed using that Meta-Model. It is based on
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mature CORBA technologies like the GIOP protocol1 and language bindings for
implementation languages.

The component model of CCM defines two kinds of interactions for compo-
nents: there is a RPC-like interaction with request/response, and a signal-like
interaction with events. For each of these interaction kinds components can de-
clare the usage or the provision.

For the notation of models, CCM extends the IDL22 syntax by rules for com-
ponents. CCM also contains a mapping from IDL3 (IDL2 + components) to the
older IDL2. This was introduced for a compatibility with older, not component-
aware CORBA clients.

But IDL3 covers only the computational aspects of components, which are
first class concepts here. For the description of some implementation aspects,
the Component Implementation Definition Language (CIDL) was published by
OMG. CIDL is a superset of IDL3 and therefore it contains all computational
concepts. Furthermore it introduces the grouping of interfaces for implementa-
tion purposes.

2.4 Apply MDA

After the identification of the development domain (distributed software com-
ponents) we apply the MDA approach. This includes the full specification of
computational objects and software components at the PIM level. But eODL
only covers the structural aspects for this kind of specification. The full picture
of involved model classes and languages is shown in fig. 2. Here we see that in
addition to eODL, SDL is used to provide a mechanism for behavioral specifica-
tion. It also illustrates the transformation between eODL and SDL models (see
a in fig. 2).

Here CCM as a platform technology is the target technology for the final
software system. The model class for structural aspects of software components
is therefore CIDL. Also, the aspects from an implementation viewpoint in eODL
can be mapped to corresponding concepts in CIDL (b in fig. 2). Only the be-
havioral aspect (which is expressed in the SDL model) cannot be transformed
into the CIDL model, because there are no suitable concepts. The final goal of
the development process is a running system and this means executable soft-
ware. Most technologies defined by OMG are neutral regarding implementation
language and base their mapping to implementation languages on existing map-
pings. CCM/ CIDL is no exception to this rule, and the regular mapping from
IDL2 can be applied here.

In this paper we will not focus on the full set of model classes involved in the
development process, but rather on the technical realization of one transforma-
tion. Therefore we narrow the process to the b transformation (see fig. 3).

1 The General Inter ORB Protocol defines the exchange of requests and replies for
RPC interaction.

2 IDL2 is the 2.x version of the Interface Definition Language standardized by the
OMG.
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CIDL

eODL SDL

C++

c

a

d

b

PIM

PSM

Fig. 2. Models and related transformations

eODL

CIDL

Fig. 3. Focus on technical realization of the transformation

A more detailed description of the whole development process shown in fig, 2
can be found in [5].

2.5 Example for a Rule

The transformation from eODL models to CIDL models is defined by using nat-
ural language. Unfortunately there is no well-established formalism3 for trans-
formation definition. In the natural language we establish a relation between
concepts of source and target Meta-Model. Pure type based transformation rules
are not possible in most cases. Only if the concept structures of source and target
Meta-Model are nearly the same, can this happen.

3 The RFP for Query/View/Transformation of models in MOF 2.0 is still under
progress at OMG.
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In the following example rule we show a mixture of type based and pattern
based definition. The example uses this font for concepts in the Meta-Models
and this font for attributes of concepts.

Rule: For each SignalDef in the eODL model, there exists an Event-
Def in the CCM model with same name. Each pair of name and data type
associated in CarryField from the eODL model is mapped to a Value-
MemberDef, which is defined in the scope of the current EventDef. All
created ValueMemberDefs are public visible (isPublicMember==true).

The example rule transforms the concept SignalDef from the source Meta-
Model in the concept EventDef of the target Meta-Model. This part of the rule
is purely type based. But to transform the signal based interaction from eODL
to CIDL we also need the correct relation between signal and signal parameters.
The structure of the Meta-Models differs here and we have to use a “pattern”
as an instrument.

3 MOF Based Repositories in Java

In this section we explain the relation between MOF and tools in the Java
environment. This starts with a short overview of MOF and continues with
related Java standards.

3.1 MOF

MOF (Meta Object Facility) is a standard for modeling data on different levels
of abstraction. MOF provides a framework that supports all kinds of metadata.
The architecture of MOF is based on the four layers as shown in fig. 4.

M3: The Meta-Meta-Model defines a language (MOF) with/by which the under-
lying Meta-Models are specified. For example: Meta-class, Meta-attribute,
Meta-operation.

M2: The Meta-Model is an instance of the Meta-Meta-Model and it defines the
language for the models. For Example: class, attribute, operation.

M1: The Model is an instance of the Meta-Model and it defines the language
for the domain. For example: class:book, class:author, operation:setAuthor
(for class:book).

M0: The Data are instances of the Model. For example: instance of the class:book
with name “cook-book”.

The MOF specification describes an abstract language for managing platform
independent Meta-Models. For example: the Unified Modeling Language (UML),
the Common Warehouse Metamodel (CWM) and the MOF itself.
The MOF-specification contains:

– a specification of the MOF Meta-Meta-Model, thus an abstract language for
the specification of MOF Meta-Models
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Fig. 4. Four-layered architecture

– a mapping of MOF Meta-Models to CORBA IDL (Interface Definition Lan-
guage)

– a set of CORBA IDL interfaces for managing Meta-data, independent from
the Meta-Model

– the XMI mapping (XML Metadata Interchange) for exchanging Meta-Models

A repository is a storage place in general. In this case we store all the data and
Meta-data in the repository. Any repository object has an identity, a unique ID
called MofID. That means that every repository element can be identified and
accessed explicitly by its MofID.

Extents. In the MOF specification, statements about object locations have no
place. Therefore the MOF assumes a concept of context in many areas:

– The classifier-scoped features of an M2-level Class are notionally common to
“all instances” of the Class.

– Mapping typically allows a client to query over “all links” in an Association
instance.

It is not feasible to define “all instances” or “all links” as meaning all instances
or links in the known universe. For that reason, the MOF specification defines
logical scopes of M1-level instances that are the base of these and other “for all”
quantifications. These scopes of M1-level instances are called extents.

Every class instance belongs to precisely one class extent. These extents are
part of package extents, depending on the structure of the Meta-Model. This
means that extents are strictly hierarchical. Extents are related to the intrinsic
container semantics of Meta-Objects.
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The extent of a class is the entire set of M1-level instances of the class. The
class instance will be created in connection with a class extent. The class persists
within this extent for its complete lifetime. The same applies to associations. The
extent of a package is a collection of class, association and other package extents.

3.2 JMI

JMI (Java Metadata Interface) provides a platform independent definition to
describe Meta-data [6]. With JMI you can create, modify, access, exchange and
store Meta-data. JMI is based on the Meta Object Facility (MOF) developed by
the Object Management Group (OMG). JMI defines the standard Java inter-
face to the modeling components which are part of MOF. JMI also provides for
Meta-Model and Meta-data interchange via XML by using the standard XML
Meta-data Interchange (XMI) specification [2]. For each model element in MOF
an interface is defined in JMI to access it. Packages of MOF are accessed by the
Refpackage interface of JMI, Association by RefAssociation and for each ele-
ment a RefClass interface which manages the set of objects and the RefObject
interface for access to the object itself. To access a concrete Meta-Model and
instances of it the interfaces have to be specialized. That means that each in-
terface for the specific model elements is a specialization of the Ref-interfaces
named according to the model element. For the instances of the MOF-class, two
interfaces are created, one named according to the model elements name plus
class and the second uses only the name. With the use of JMI as a mapping
from MOF onto Java, the implementation of a Meta-Model based mapping in
Java is facilitated.

3.3 MDR

The repository we used for our implementation is called MDR (Meta Data Repos-
itory) [7]. It is written in Java and developed by the netbeans community. It con-
tains an implementation of the MOF repository, including the persistent storage
mechanism for storing the metadata. The interface of the MOF repository is
based on and fully compliant with JMI [6]. The MDR provides the generation of
JMI interfaces and an XMI Reader and XMI writer facility as well. It allows in-
stantiation of any MOF compliant Meta-Model and models in the Meta-Models.
We chose MDR as a repository because it is a Java and JMI based free avail-
able implementation and because of its built-in features. Besides netbeans MDR,
there are also existing other JAVA based repositories. Two of them are Mod-
Fact [8] and openMDX [9]. Both support JMI and are fully MOF compliant,
but ModFact is still under development and considered Beta and therefore not
stable. We chose MDR instead of openMDX because it is widely-used, stable
and our previous experience in working with MDR.

4 Syntax Based Languages and MOF Repositories

Our aim was to enable the transfer of textual notated eODL-programs to the
MOF repository. Why do we want to transfer eODL source code files to the
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repository? On the one hand, thus we have another possibility of input apart
from model input via XMI, on the other hand we achieve a high integration,
because there are tools, which create textual eODL notation from graphical
eODL notation.

In this chapter we describe how textual notated programs in eODL can be
transferred to the MOF repository. Here programs are the eODL source code
files. eODL is a syntax based language. Its grammar is defined in Z.130. In the
following part we give a short introduction to ANTLR which is the compiler
generator tool we used. Apart from ANTLR we used MOF and JMI. Both are
described in section 3.

4.1 ANTLR

We used ANTLR (ANother Tool for Language Recognition) [10], a compiler
generator tool, to manage the lexical and the syntactical analysis process and to
construct the objects in the repository by means of semantical actions.

ANTLR is developed by Terence Parr. It constructs recursive descent parsers
from LL(k) grammars, for k > 1.

ANTLR integrates the specification of lexical and syntactical analysis. A
separate lexical specification is unnecessary. Lexical regular expression (token
descriptions) can be placed in double quotes and used as normal token references
in an ANTLR grammar.

ANTLR accepts grammar constructs in EBNF (Extended Backus Naur Form)
notation. It provides facilities for automatic abstract syntax tree (AST) construc-
tion and modification.

ANTLR allows each grammar rule to have parameters and return values.
It converts each rule to a Java function; a rule parameter is simply a function
parameter. Additionally, ANTLR rules have multiple return values.

4.2 From Syntax to Model Creation in MOF Repository

As we used ANTLR for building the parser, we had to change some things
concerning the grammar of eODL. For example, we eliminated the optional usage
of a meta symbol which is optional itself. After we had made the corrections the
parsing of eODL-source files was possible.

Beside the parsing the source code in the first pass, we also generated an
abstract syntax tree (AST). By contrast, to generate code (as we would do for
building an usual compiler) we had to create model elements in the repository.

We used local symbol tables for each node in the AST, so we could manage
and resolve container-content relations. We have to transfer these relations to
the repository.

We also built up two global symbol tables realized with two associative con-
tainers, meaning two hashmaps:

– The first hashmap contains the names of the types already found associated
with the created model elements.

– The second one contains elements with missing references.
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At this point we can start to create instances of Meta-Model-elements in the
repository. We demonstrate this technique with the following example. It is an
extract from Dining Philosophers shown in listing 1.

module DiningPhilosophers {
CO o Philosopher{};
CO o Fork{};
interface i Fork;
interface i Philosopher;
interface i Observer;
exception ForkNotAvailable {};
exception NotTheEater {};
enum e ForkState { UNUSED, USED, WASHED };
enum e Pstate { EATING, THINKING, SLEEPING, DEAD, CREATED, HUNGRY };

interface i Fork {
void obtain fork ( in o Philosopher eater )

raises ( ForkNotAvailable );
void release fork ( in o Philosopher eater )

raises ( NotTheEater );
};

artefact a ForkImpl {
obtain fork implements supply i Fork::obtain fork;
release fork implements supply i Fork::release fork;

};

CO o Philosopher {
implemented by a PhilosopherImpl with Singleton;
supports i Philosopher;
requires i Fork, i Observer;
use I observer observer;
use i Fork left;
use i Fork right;

};

valuetype Pstate {
public e PState mystate;
public string name;
public i Philosopher philosoph;
factory create ( in e PState mystate, in string name,

in i Philosopher philo );
};

signal PhilosopherState {
PState carry pstate;

};

interface i Observer {
consume PhilosopherState pstate;

};
};

Listing 1. Extract from Dining Philosophers

In the given source code (listing 1) line 13, there is the following declaration:
void obtain fork ( in o Philosopher eater )

(within interface i Fork).
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Each element, which is to be associated with other elements are created in the
repository. We also look up in the first hashmap, whether the hashmap contains
the element. If this is true, the element is associated. If not, the element have to
be inserted in the second hashmap.

Types we find in the AST, we create in the MOF repository. Also they will
be inserted in the first hashmap. As we find o_Philosopher while traversing
the AST, we have to look up in the first hashmap, whether o_Philosopher
already exists in the model. If not, we have to insert o_Philosopher in the
second hashmap. For every type we find, at first we take a look at the second
hashmap: if there is an item, which needs to be associated with the type we
have found (this type has to be inserted in the first hashmap as a matter
of course), we can complete the model element creation in the repository. In
this case we have to delete all these items from the second hashmap. If we
have traversed the whole AST and the second hashmap is empty the Model
is transferred completely to the repository and we can work with the Model.
If not, an error occurred.

5 Implementing Rules in Java

5.1 Introduction

This section describes the concrete implementation of the mapping rules with
MDR using JMI. The whole project is called etoc standing for eODL to CIDL.
The transformation is based on the principle of recursive descent and the tech-
nique of the Fluxbox. etoc is implementing the mapping between an eODL
extent and a CIDL extent: first, the given extent is transformed into a new
CIDL extent; second, it is walked to produce a syntax based output into an IDL
and CIDL file. Both parts of the mapping and walking respectively are using
the recursive descent principle. In contrast to traditional compiler technology,
there is no need for a symbol table or AST (abstract syntax tree). Each element
could be identified through its MOF-id. Using the knowledge of these properties
allows an easy to understand and straightforward implementation.

5.2 Architecture of etoc

The whole transformator consists of two parts due to the split process of trans-
formation. There is the Z130ComputationalViewTransformator responsible for
the walking of the eODL model in respect to the computational view of eODL.
Also, here is the Z130ImplentationalViewTransformator for walking the im-
plementational view, allowing a split and selectional transformation. For further
generation of syntactical output there is the CcmModelWalkerfor walking the
transformed model and generating the output. Besides these components the
FluxBox has to be used for transformation.
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Fig. 5. Fluxbox technique

5.3 One Pass Transformation with the Fluxbox

As for the problem of relating two objects in MOF without knowledge of the
existence of the other one, a concept is introduced named Fluxbox.4

Assume we have two objects named A and B as you can see in fig. 5, and F
is representing the Fluxbox. Both are connected through a directed association.
The intention is to map A on A’ and B on B’ and to establish an association
between A’ and B’. While browsing the model within the repository an instance
of A has to be handled. The first step is creating the instance A’ with the corre-
sponding properties, the second is to relate A with B. While browsing the first
time (1), one cannot ensure if B is existing, so it would be impossible to asso-
ciate with a nonexistent object. The Fluxbox allows creation of an instance of B
using the origin objects MOF-id for uniqeness and reference, without specifying
B any further. The Fluxbox’s base is creating a placeholder element, that can
be accessed and changed by demand. By giving the Fluxbox the meta object
defined by JMI for creating the image object paired with the key of the original
object, the image element is created and returned. In further model walking, the
element B is found (2), so B’ is again accessed through the Fluxbox using the
MOF-id of B and specified according to the mapping from B to B’. The Fluxbox
is a container, to be more precise a Hashmap with the original objects MOF-id as
the key and the image model element as the contained element.The Fluxbox’s
only operation is getting the object according to the given key. If there is no ob-
ject associated with the given key a new one is created, else the existing object
is returned for manipulation. Thus the Fluxbox solves the problem of possible
not existing objects and simplifies the whole process of transformation by giving
the possibility of one pass transformation.

5.4 Transforming the Model

The Transformator etoc supports two possible inputs, syntax based input files
(parsed by the eODL parser and model injector as described in section 4) or

4 It was originally developed by Markus Scheidgen (scheidgen@informatik.hu-
berlin.de) for handling of such problems.
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the XMI representation of the eODL model. Both methods result in an eODL
extent within the repository, the first one by creating the eODL extent directly
while parsing, the second by using the built-in XMI-Reader of MDR passing
the extents target location as an argument while calling. Because OCL is not
fully supported in MDR the formulated constraints are not considered, so it is
possible to add them at any time. The concepts which are not supported by
the mapping like MediaDef or the deployment view are not considered in the
implementation. Despite that approach ,they are read and included within the
repository. This preserves the implementation’s future extensibility.

Having instanced the model in the repository, further actions are necessary.
First a CIDL extent is created and named uniquely according to the given ex-
tent of eODL. Second, the given eODL extent has to be walked recursively for
transforming the model. The key for transforming the model is the use of two
techniques: the container-content relation, and t the Fluxbox using the MOF-
id. Because of the container-content association, the model is presenting itself
in a tree structure, meaning each model element is connected to his container.
Therefore the entry points for walking can be determined by getting all top
level objects. These elements are implicitly contained within the virtual global
module forming also a container for elements. Each of these container elements
forms a separate tree of containment, so the whole model is representing it-
self as a set of trees. Every tree is a spanning-tree, meaning it is covering all
contained model elements, because of the containment restriction of eODL and
CIDL respectively. This assures that every model element is reachable and can
be walked. Using the Fluxbox technique bypasses the problem of “not yet ex-
isting” model elements and allows a one pass transformation. So every model
element which has to be created during the process of transforming is generated
out of the Fluxbox. The mapping is done in two steps: first, the cloning of the
common IDL core; second, the mapping rules for the eODL specifics. Imple-
menting the cloning follows a straightforward schema. For each common model
element, the element’s attributes and references are copied to the new created
element. Also, the associations are copied by setting the corresponding reference
objects on the new created model elements. Implementing the mapping rules
is done as straightforwardly as cloning the IDL core. Because each element of
eODL is mapped on one CIDL element, the Fluxbox can be used with the orig-
inal element’s MOF-id. This allows the assignment of the image element to the
origin model element. Afterwards the repository contains the eODL model and
the CIDL model resulting from the transformation, so both of the models can
be accessed and manipulated on demand.

5.5 Traversing the Transformed Model

After the transformation has finished, the extent is walked by the CcmModelWalker
to produce a syntax-based output in files. The principle of the walker is again the
recursive descent using the container-content relation. While passing each element
the corresponding code is created by converting types to strings and resolving the
namespace.Thewalk is not obligatory because there is the possibility ofwriting the
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resulting model in an XMI file by using the built-in feature of MDR for generating
XMI output.

5.6 Using JMI

This section covers the more implementational aspects of the transformation.
Accessing the model is done by using JMI and MDR which is implementing the
provided operations. In the following, the access is described by example. Han-
dling of the package hierarchy of eODL and CIDL is done by providing elements
of the type RefPackage which delivers the class proxy objects and association
objects. The type IdlPackage grants access to all IDL model elements of eODL
and the type CCMMetamodel to those of CIDL. Note that z130 is an instance
of Z130Package which is the start point of the extent and therefore the extent
itself.

ComputationalViewPackage compView =
z130Extent.getAdvancedConcepts().getComputationalView();
Iterator signalDefIterator = compView.getSignalfDef().refAllOfType().iterator();

Listing 2. Example for package handling

The iterator provides the browsing in the collection of instances, each of the
type SignalDef. For each model element there are two types of interfaces grant-
ing access. The first one is a specialized element of RefClass representing the
proxy object which is managing the set of instances. The second one is a special-
ized RefObject object providing the access to the model elements instance itself.
In the following example the former SignalDef element is walked and named
signal. The EventDef in context of CIDL is created with the Fluxbox and
named newEvent.

EventDef newEvent = (EventDef)
fluxBox.getObject(ccm.getComponentIdl().getEventDef(), signal);

newEvent.setIdentifier(signal.getIdentifier());
newEvent.setRepositoryId(signal.getRepositoryId());
newEvent.setVersion(signal.getVersion());
newEvent.setDefinedIn(setContainer(signal.getDefinedIn()));

Listing 3. Example for element mapping

As you have seen, the attributes were copied by using the get-function calls on
the original element using their value on the set-functions of the new eventtype.
The members of the signal are also traversed recursively. The setting of their
Idltype is the setting of the reference object of the TypedBy association. Another
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way of handling the association instances is getting the RefAssociation objects
allowing to add or remove instances taking part in the relation. Each association
is specialized according to the related types. Besides this, it is also possible to
access them by setting or getting the proper reference attributes. The code in
listing 4 describes how to handle the association proxy object.

z130.idl.InterfaceDef interfaceBase;
ccmmetamodel.baseidl.InterfaceDef interfaceDerived;
...
InterfaceDerivedFrom derivedFromAss =

z130Extent.getIdl().getInterfaceDerivedFrom();
derivedFromAss.add(interfaceBase, interfaceDerived);

Listing 4. Example for association handling

Obviously the association is retrieved through the z130Extent. Both inter-
face objects are created by using the Fluxbox. Then accessed by adding the
participating objects to the association. The objects also grants functions like
remove, exist and so forth.

6 Conclusions

As we showed in this paper, the implementation language Java, the JMI standard
and the JMI implementation MDR build a powerful combination for the real-
ization of MDA related tools like transformers. More generally it demonstrates
that MDA is a real use case for software development; all base technologies are
available as products. But the transition to new standards like MOF 2.0 from
OMG is not supported by current Java tools.

The developed transformation tool enables automatic translation of platform
independent models of software components to CCM specific models of these
software components. With the acceptance of textual syntax, input and the out-
put of CIDL documents in textual syntax notation and integration with existing
tools is simple. The usage in automatic build processes is easy, because there is
no struggling with IDE or GUI.

7 Further Work

Most of the work to build an MDA based transformer can be done by using
tools. The lack of formal description methods of transformations is the main
obstacle here. There are some promising approaches, but no easy-to-use tooling
like for MOF repositories. So the definition of such formalism has to be tackled
in future. The activities in the Query/View/Transformation RFP by the OMG
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have great potential. But only tools for automatic implementation derivation
especially in Java will support the application of MDA further.

Also, the automatic or semi-automatic integration of traditional syntax based
languages in the Meta-Model centered world is a field of future activities.
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Abstract. Current trends in distributed computing and e-business pro-
cessing suggest that many applications are evolving towards Service Ori-
ented Computing (SOC) with technologies such as Web services. Services
are autonomous platform-independent computational elements, and we
observe an increasing need for core SOC technologies for dynamic dis-
covery, selection, and composition of services. However, such technologies
are often based on syntactic descriptions of the services and of their in-
terfaces, which are insufficient to ensure that desired liveness properties
are satisfied. In this paper, we propose an approach for the descrip-
tion, discovery, and selection of services based on role modeling and
goal expressions that enables the definition of semantic interfaces and
the evaluation of liveness properties. The same mechanisms also enable
component reuse. We discuss how UML 2.0 can support the modeling of
both the services and the desired properties. The approach is illustrated
with telephony services.

1 Introduction

Many emerging distributed applications, platforms, and architectures, such as
Web services and grid architectures, attempt to take advantage of the concept of
service. A service is an autonomous platform-independent unit of work done by
a provider to achieve desired end results for a consumer. The purpose of increas-
ingly popular Service-Oriented Architectures (SOA) is often to promote the use
and reuse of application-neutral services and components, and to achieve loose
coupling between the participating entities. Such architectures contain three
main parts: a provider, a consumer, and a registry. Providers publish or an-
nounce their services on registries, where consumers find and then invoke them.
To support such Service-Oriented Computing, several protocols and languages
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have been developed to characterize, register, discover, invoke, and compose ser-
vices [16].

Of particular interest is the problem of selecting a service that can interoper-
ate with a client application and that can meet the desired goals of the collabo-
ration. As we move toward open environments where anyone can wrap existing
functionalities or create new ones and then offer them as remote services, being
able to select the most appropriate service (if any) becomes imperative. Current
enabling technologies are often based on syntactic descriptions of the services and
of their interfaces. For example, the Web-Service Description Language (WSDL)
uses ports, operations, and message types to define the abstract interface and
protocol bindings of a service [17]. A UDDI registry catalogs such service char-
acteristics, together with business and category information [13]. Other service
discovery protocols (such as SLP, SDP, Jini, Salutation, and UPnP) describe
services with identifiers, types, attributes (including some quality of service),
and/or static interfaces [3]. We believe such descriptions to be insufficient to
ensure that liveness properties (the collaboration goals) desired by the service
customer are satisfied. A discovered service may offer the required static inter-
face but may not be able to achieve the desired goals; it should then not be
selected.

To tackle this problem, we propose an approach for the description, discov-
ery, and selection of services based on role modeling and simple goal expressions
that enables the definition of semantic interfaces and the evaluation of live-
ness properties. These mechanisms are generic enough to address the related
issue of component reuse. Section 2 presents how UML 2.0 [14] can support
the modeling of both the services and the desired properties. Typical usages of
semantic interfaces are discussed in section 3. The approach is illustrated with
telephony services, but is not limited to the telecommunication domain. Our
conclusions follow.

2 Semantic Interfaces

2.1 Distributed Systems Architecture

Figure 1 suggests an architecture for service-oriented systems that is character-
ized by horizontal and vertical decomposition. On the horizontal axis, several
computational objects (actors) are identified that may reside in different com-
puting environments. This axis represents the physical and logical distribution
of the system. On the vertical axis, several services are identified that are pro-
vided by the distributed systems. In the simplest situation, these services are
provided independently of one another. In practice, however, there are usually
constraints relating to resources of an actor that are shared by the components
involved in the different services, which leads to dependencies between the dif-
ferent services.

The main concern in this paper is the compatibility of the different ser-
vice components involved in the provisioning of a given service. (We note that
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Fig. 1. Two-dimensional view of a Service-Oriented Architecture
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one or several of these components may constitute a user agent). In the fol-
lowing, we call these service components simply “components”. Typically, each
component interacts with several other components within the same horizon-
tal service. For a given component, we identify a number of interfaces, one for
each other component with which it cooperates. Figure 2 shows an example
of two components, CA and CB, each having two interfaces, and where the
two components interact with one another through the interfaces A and B,
respectively.

The figure also indicates that messages are exchanged between these two
components. What is labeled session in the figure, actually represents the col-
laboration between these two components. Different graphical notations have
been proposed in UML for representing collaborations [14]. In this article, we
consider the description of collaboration behaviors at different levels of abstrac-
tion. At the highest level, we use UML activity diagrams which only represent
the order in which certain phases of the service collaboration proceeds. If we
want to describe globally the messages exchanged during a collaboration, we use
UML interaction diagrams. These two descriptions are not necessarily complete;
they typically concentrate on certain use cases. For a complete description of a
collaboration, we consider first the state machine description of the behavior of
each of the components. Since such a component behavior description includes all
interactions of the given component over all interfaces, it is more complex than
required, if we are only interested in the collaboration of the component over
a specific interface. Therefore we also consider the projection of the component
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behavior over a given interface, which we call the interface role behavior of the
given component. It is the behavior it exhibits over the interface where it plays
a particular role in the collaboration.

We use in the following the term semantic interface to denote a collaboration
including the role behavior of the participating components and the progress
goals (see below) that should be reached by the collaboration.

Note that this approach is not bound to UML: activity diagrams could be re-
placed with Use Case Maps (UCM), interaction diagrams with Message Sequence
Charts (MSC), and state diagrams with the Specification and Description Lan-
guage (SDL).

2.2 A Simple Example

We consider the following simple example from telephony in order to explain
the concepts introduced in this paper. The telephony service involves two com-
ponents, the user agent of the calling user, named A, and the user agent of
the called user, named B. The diagram of fig. 3 shows the structural aspect of
this collaboration; only the interfaces between these two components are shown,
not the interfaces with their respective terminals and users. The diagram also
shows a progress goal that should be reached by the collaboration: The system
should reach a global state where VoiceCnt(A, B) is true, that is, A has a voice
connection to B and B has a voice connection to A.

We consider that a UserCall collaboration may involve the following phases:
Invite, Calling, and Busy, as shown in the activity diagram of fig. 4. This is a
very basic behavior that may be enriched with more service features as will be
illustrated in section 3.

The following sequence diagrams give more details about these phases. They
show the overall sequencing of the phases, similar to the activity diagram above

A:Caller B:Callee

UserCall

{ goal: VoiceCnt(A,B)=A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 3. The UserCall collaboration structure
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UserCall

Calling
{goal:

VoiceCnt(A,B)}

Invite

Busy

Fig. 4. Phases of the UserCall collaboration

as well as the interactions leading up to the connected state. Reaching the
connected state is clearly a goal for the UserCall service, and this is represented
by the goal expression goal: VoiceCnt(A,B) where VoiceCnt(A,B) is a predicate
over properties of the two participating roles A and B, for instance:

VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)

In order to keep the example simple, we only show a basic call handling
service with one feature, WaitOnBusy, in fig. 5. Using the same general approach
a much richer set of features can be designed.

Finally, the two state transition diagrams in fig. 6 show the role behavior
of the two collaborating components in a featureless basic call service. Since
only one interface is considered for each component so far, the role behavior
at these interfaces is identical to the overall behavior of these components. In
these diagrams, we have omitted behavior needed to resolve conflicts in the case
of initiative collisions which may occur in states with both input and output
transitions (called mixed initiative states in [5, 8]). In reality, the role behaviors
must be extended to include behavior for resolving such conflict situations (e.g.,
see the work of Gouda [9] and Floch [8]).

It should be noted here that the diagrams in fig. 6 define what we call the
semantic interface of the UserCall collaboration. In addition to defining the static
interface in terms of the signal types interchanged in each direction (not explic-
itly shown here), it also defines the interface behavior in terms of sequences of
interactions and the goals in terms of predicates specifying properties of desirable
states and events.
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A:Caller B:Callee

sd UserCall

ref Invite

Callingref

ref Busy

alt

A:Caller B:Callee

sd Invite

Invite (A, role) 

A:Caller B:Callee

sd Calling

Alerting

Reply (options)

EndReq

connected
{goalVoiceCnt(A,B)} 

EndCnf

EndReq

EndCnf

alt

A:Caller B:Callee

sd Busy

Busy(BusyOptions)

Wait

ref WaitOnBusy

alt

Callingref

ref End

ref End

sd End

A:Caller B:Callee

Fig. 5. UserCall interactions

2.3 Criteria for Component Reutilization and Service Discovery

To set the stage for the following discussion, we consider two situations where it is
important to compare different component specifications and implementations:

1. We consider the following scenario of service discovery (refer to fig. 2): A
component CA is given; and we are looking for a “service” that presents an
interface similar to the one presented by component CB, such that CA and
CB may perform a collaboration similar to the one described above.

2. We consider a scenario of component reuse, where during system design we
identify a system component C with a given requirements specification SC .
Now we are looking for an existing implementation I that could be used as
component C in the implementation of the system.
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Inviting

?Alerting
?Busy(BusyOptions)

Alerting

?Reply

?EndCnf

!EndReq

!Invite(A, Role)

Connected
{goal: 

VoiceCntTo(B)}

disconnect
Forward

!EndReq?EndReq

!EndCnf

end
Forward

SelectBusy
Action

disconnect
Backward

Idle

Idle

!EndReq

?EndCnf

Inviting

!Alerting
!Busy(BusyOptions)

Alerting

!Reply

!EndCnf

?EndReq

?Invite(A, Role)

Connected
{goal: 

VoiceCntTo(A)}

disconnect
Forward

?EndReq!EndReq

?EndCnf

end
Forward

SelectBusy
Action

disconnect
Backward

Idle

Idle

?EndReq

!EndCnf

UserCall::Caller UserCall::Callee

A:Caller B:Callee

UserCall

{goal: VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 6. A semantic interface with a goal and interface role behaviors

We assume in the following that a requirements specification S is given in the
form of some logical predicate that must be satisfied by the implementation. This
predicate may define a state machine, or it may be of a more general form. We
also assume that each implementation I can be described by a logical predicate
PI that characterizes all the properties of the implementation. Then we have the
following lemmas/definitions:

Lemma 1 (Conforming implementation). An implementation I conforms
to the requirements S if PI ⇒ S (logical implication).

Lemma 2 (Specialization). A specification S′ is a specialization of another
specification S if S′ ⇒ S. (One also says that S′ is a subtype of S).

Lemma 3 (Reuse of a component). An implementation I that conforms to
the requirements S′ can be reused as an implementation for a component that
must satisfy the specification S, if S′ ⇒ S.
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A requirement has often the form of an implication: If certain assumptions
about the environment of the component are satisfied then the component will
have to satisfy certain guaranteed properties [1]. We therefore assume that a
requirements specification is given the form S = (As ⇒ GP ), where As repre-
sents the assumptions and GP the guaranteed properties. Then we can say that
S′ is a specialization of S if (As′ ⇒ GP ′) ⇒ (As ⇒ GP ) which is equivalent
to (As ⇒ As′) ∧ ((As ∧ GP ′) ⇒ GP ) ∨ (¬(As ⇒ As′) ∧ GP ). This means that
S′ is a specialization of S if, and only if, the assumptions of S′ are weaker than
or equal to those of S and the guarantees of S′ (when the assumptions of S are
satisfied) are stronger than or equal to those of S, or the guarantees of S are
satisfied independently of any other assumptions.

We note that component requirements can usually be divided into structural
(static) properties and dynamic properties that relate to the dynamic behav-
ior of the component. The following paragraphs discuss briefly the structural
properties; aspects related to the dynamic behavior are discussed in the next
subsection.

Definitions of interfaces (in the sense of object-oriented languages or SDL
channels) represent structural properties. An interface definition states what
kind of methods must be provided by a class (a guarantee provided by the
component); it also states that the component may make the assumption that
the environment will not try to call a method that is not defined. The latter
assumption is usually checked by the compiler according to the type checking
rules of the language.

The declaration of the type of a parameter in an input message for a given
component specification represents the assumption that the environment will
only provide input parameters of the specified type. Conversely, the declaration
of the type of a parameter in an output message (or return value of a method call)
represents a guarantee to be provided by the component that only values of that
type should be presented in the output message. Together with the definition of
specialization given above, this leads to quite general type checking rules, as for
instance defined for the Emerald language [2].

2.4 Formalizing Safety and Liveness Properties of Collaborations

Subtyping of State Machines. We assume in the following that the dynamic
behavior of a component is specified in the form of a (deterministic) finite state
machine where each transition is either associated with an input or an output.
We also assume that the specification of the static structure defines the set
of input and output interactions that may occur at each of the interfaces of
the component. Assuming that a state machine specification only defines safety
properties of the component (we will discuss liveness properties later in this
section), we interpret a given state machine specification for a component C as
follows:

1. If the component produces an output, then the state machine has an output
transition with this output as a label from the current state of the compo-
nent. When doing the output, the component enters the new state defined
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by that transition. This is in fact a guarantee that any produced output is
one of those allowed by the specification.

2. If the component receives an input, it will enter a new state as defined by
the transition (from its current state) labeled by this input. The specifica-
tion makes in fact the assumption that only inputs that are defined for the
current state in the specification will be produced by the environment of the
component.

Based on this interpretation of state machine specifications, we note that a
state machine specification S′, which is obtained from a given specification S by
adding some additional input transitions, has weaker assumptions than S and
defines therefore a subtype behavior of S. Note that a new input transition may
lead to an existing state or a new state; additional input and output transitions
may be added from the new states while keeping the subtyping relationship. We
call this form of subtyping extension, indicated by the label “ext” in the UML
icon for inheritance (see fig. 8). The diagram in fig. 7 provides an example where
the CalleeW role is an extension of the Callee role from fig. 6.

Inviting

?Alerting
?Busy(BusyOptions)

Alerting

?Reply

?EndCnf

!EndReq

!Invite(A, Role)

Connected
{goal: 

VoiceCntTo(B)}

disconnect
Forward

!EndReq?EndReq

!EndCnf

end
Forward

SelectBusy
Action

Waiting
{goal:

WaitForFree(B)}

?Alerting

!wait

disconnect
Backward

Idle

Alerting

Idle

!EndReq

!EndReq

?EndCnf

end
Forward

Inviting

!Alerting
!Busy(BusyOptions)

Alerting

!Reply

!EndCnf

?EndReq

?Invite(A, Role)

Connected
{goal: 

VoiceCntTo(A)}

disconnect
Forward

?EndReq!EndReq

?EndCnf

end
Forward

SelectBusy
Action

Waiting
{goal:

CallInQueue(A)}

!Alerting

?wait

disconnect
Backward

Idle

Alerting

Idle

?EndReq

?EndReq

!EndCnf

end
Forward

UserCallW::CallerW UserCallW::CalleeW

AW:CallerW BW:CalleeW

{goal: VoiceCnt(A,B) or Waiting(A,B)}
{WaitiOnBusy(A,B) = A.WaitForFree(B) and B.CallInQueue(A)}

UserCallW

Fig. 7. Semantic interface for UserCallW: UserCall with WaitOnBusy feature added
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Similarly, if S′ is obtained from S by removing some output transitions,
then S′ defines a subtype behavior of S. In this case, some liveness properties
may get lost, because the subtype restricts the interaction possibilities. We call
this form of subtyping reduction, indicated by the label “red” in the UML icon
for inheritance. (This is similar to the reduction of nondeterminism considered
in [6]). As an example, the Caller role in fig. 6 is a reduction of the CallerW role
in fig. 7.

Safety Compatibility Requirements for Collaborations. We now con-
sider that a component CA should collaborate with a component CB, as shown
in fig. 2. If we are only interested in the compatibility of these two compo-
nents for the interactions taking place over the common interface, we first can
make abstraction of the interaction of these components over other interfaces.
This operation of abstraction is often called projection and consists of hiding
all interactions that do not occur over the interface of interest. This projection
operation, applied to the state machine S defining the overall behavior of the
component, leads in general to a nondeterministic machine. We assume in the
following that the well-known determination algorithm ([10], which is of expo-
nential complexity) has been applied in order to obtain a deterministic state
machine ProjIF (S) showing the behavior of the component S at the interface
IF of interest.

We now consider the collaboration between the components CA and CB with
specifications SA and SB, respectively. We note that compatibility between CA
and CB means that CA only sends interactions to CB that CB can handle in its
current state, and inversely, that CB only sends interactions to CA that CA can
handle in its current state. In other words, the guarantees of ProjIF (SA) imply
the assumptions of ProjIF (SB), and the guarantees of ProjIF (SB) imply the
assumptions of ProjIF (SA).

We now may make the assumption that the interactions over the interface
are immediate, that is, an output interaction generated by one component is im-
mediately consumed as input by the other component, without any intermediate
queuing. We call such an interface a direct coupling interface. Although not very
realistic for distributed systems, this kind of interface is used for many theoret-
ical models, such as Input/Output Automata [11]. It has the advantage that no
cross-over of messages in opposite directions may occur over the interface.

Lemma 4. Given a component CA with dynamic behavior ProjIF (SA) over
the interface IF , the most general (in the sense of our specialization relation)
behavior at the interface for the collaborating component CB is given by the
state machine obtained from ProjIF (SA) by exchanging for each transition the
direction of interaction (replace input by corresponding output or output by cor-
responding input). See for instance the work of Gouda [9] or Drissi [7].

In the more realistic case where outputs are queued within the communica-
tion medium before they are consumed as input by the destination component,
the compatibility conditions are more complex because messages may cross over
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within the medium and the order of inputs and outputs occurring at one com-
ponent may be different from the order of the corresponding outputs and inputs
at the other components. Gouda [9] and Floch [8] propose some interesting ap-
proaches for deriving a most general behavior at the interface for a component
CB collaborating with a given component CA.

Considering Liveness Properties in Collaborations. While safety talks
about constraints that must be satisfied for any valid execution sequence that
may occur, liveness properties talk about certain progress that should be made
or states that should be reached. Various approaches have been proposed for
describing liveness (or progress) properties. We propose in this paper the notion
of a goal which is a predicate on the local or global state space of the system.
We say that a system satisfies a given goal G if one of the execution paths of the
system leads to a state s for which G(s) is true. This is equivalent to a statement
in branching time temporal logic saying that there exists a branch that leads
eventually to a state for which G holds. In general, the requirements of a given
system may include several goal predicates that should be reachable. If a single
state should be reachable that satisfies a set of goals G1, . . . , Gn simultaneously,
this can be expressed by a new goal of the form G = G1 ∧ . . . ∧ Gn.

In the example of the telephone system presented previously, the activity
diagram of fig. 4 contains the mention goal: VoiceCnt(A,B) for the activity Call-
ing. This means that the Calling phase should be reachable, while the text
VoiceCnt(A,B) has no formal meaning at this point. In fig. 5, the location of
this goal (within the reachable global state space) is further refined. Also, in
fig. 6, the same goal is described from the point of view of one of the compo-
nents participating in the collaboration; here we see that a particular state of
the state machine should be reachable. The additional predicate VoiceCntTo(B)
may be evaluated within the component A by referring to additional variables
not shown in the diagram.

As mentioned earlier in this section, when one replaces, within a given system,
a component A with behavior S by another component A’ with behavior S′ where
S′ is a subtype of S, it could be that certain global (and local) states that were
reachable with S are not reachable anymore with S′ (except in the case when S′ is
a pure extension of S). If such states are associated with goals, these goals would
not be reachable anymore. We conclude that the definition/lemma (3) mentioned
in section 2.3 must be revised by indicating that the relationship S′ ⇒ S implies
that there is no problem for reuse as far as safety properties are concerned, but
there may be a problem concerning progress, unless the subtype relationship is
a pure extension. We do not know of any general rule for solving this dilemma,
however, we know that the relevant progress properties may possibly not be
satisfied by the replacement component S′. These progress properties should
therefore be checked. This could be done by performing a reachability analysis
of the collaboration in question.

We conclude this section by noting that the compatibility of two components
participating in a collaboration over a given interface has two aspects: safety
properties and progress properties. These properties can be checked by consider-
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ing the role behavior of the components which is the behavior of the components
projected onto the collaboration interface. Safety compatibility means that any
output produced by one component is acceptable by the other component when
it is received as input. In the case of interfaces without any message transfer
delay (excluding cross-over of messages), this relationship is easily checked by
comparing the respective role behaviors. In the case of message delays over the
interface, the verification of compatibility is much more complex, and can for
instance be solved by reachability analysis, which may, however, involve arbitrar-
ily long message queues. The safety-oriented subtyping relationship of dynamic
behaviors is useful for deciding these compatibility questions.

We introduce in this paper a notation for specifying progress properties of
collaborations. It is important to note that they are not implied by the behavior
specifications that are commonly represented by finite state machines or other
similar formalisms. We show in this paper how progress properties can be taken
into account during the definition of collaborations and for identifying compo-
nents that are compatible with a given component, not only as far as safety is
concerned, but also concerning the progress properties.

3 Using Semantic Interfaces

3.1 Service and System Composition

We assume now that each component type may have a number of interfaces,
and that each interface is defined (typed) by referring to a semantic interface.
Safety and liveness properties may be analyzed once for each semantic interface
as explained in section 2. This analysis does not need to be repeated for each
component, but it is necessary to check for each component type that its behav-
ior is consistent with the role behaviors attached to its interfaces. This means
to check that the role behavior is a projection of the component behavior as
explained in section 2.4. When this is done, the semantic interfaces can be used
to check compatibility of static and dynamic links between component instances
in a service or system structure.

Traditional model checking is performed on instance structures and does not
scale well when the structures change and grow. By analyzing each component
type and semantic interface separately and building maps over subtype rela-
tionships, much of the computation intensive work can be done once and for
all at design time and thus reduce the work needed at runtime. In this way,
semantic interfaces provide an enabler for scalable, runtime compatibility checks
in dynamic system structures. This is especially important in systems where
new services and components may be added dynamically, as for instance in the
emerging service oriented computing paradigm, but it is important in any system
with dynamic link structures.

As a simple example consider the case presented in fig. 7. Here the UserCall
has been extended with a WaitOnBusy feature. More precisely, the Callee role has
been extended so that CalleeW ⇒ Callee (extension). In order to fully explore this
extended role behavior, corresponding output must be added to the Caller role as
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Caller CalleeUserCall

CallerW CalleeWUserCallW

ext

extensionreduction
red

Fig. 8. Subtyping relationships for the semantic interfaces of UserCall and UserCallW
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Compatible {UserCall.goal}

Fig. 9. Using semantic interfaces

shown in the CallerW role. As a consequence, the Caller ⇒ CallerW (reduction),
as illustrated in fig. 8.

Now, consider four components that subscribe to these interfaces as illus-
trated in fig. 9. Obviously two components that provide dual roles of the same
interface will fully satisfy safety and liveness properties when connected across
the interface. In addition, components providing the Caller role may inter-work
safely with components providing the CalleeW role. However, in this case the
WaitOnBusy goal is not reachable. CallerW and Callee are incompatible, as indi-
cated in fig. 9.

In service providing systems, it is quite common that links between compo-
nents are dynamic. In telecommunication services for instance, the links between
user agents, terminals and other objects change from call to call. The service
features available at a given instant will normally depend on subscription infor-
mation, user preferences, current state and available resources. Therefore, it may
be necessary to check the compatibility for each dynamic link that is established.
In our examples this has been omitted, but could be added as checks or possibly
negotiations performed during the Invite phase.

In many telecommunication services, such as the UserCall presented here, the
identity of the objects playing the service roles are important. The Caller for



98 R.T. Sanders et al.

instance wants to reach a particular user, not just any user. In other cases the
identity is not so important. The problem is to find some object that can provide
a service or part of a service, in other words to find an object that can play a
given role. This is a case of service discovery.

3.2 Service Discovery

Service discovery has two dimensions:

1. Finding existing component types and instances that can provide a desired
behaviour across a semantic interface. This is needed when a component
with a given semantic interface needs to find and connect to a compati-
ble component over that interface. We call this discovery of complementary
components.

2. Finding new component types and new semantic interfaces that can provide
new or enhanced services, e.g., finding out if an actor can perform new or
enhanced services by obtaining a new type of component. We call this role
learning.

In the following sections we present approaches to these challenges.

3.3 Discovery of Complementary Components

Discovery of complementary components is a mechanism by which a component
can determine what other component types or instances are capable of play-
ing compatible complementary roles. This may be accomplished by specifying a
desired semantic interface and role, given knowledge of collaboration roles and
their subtyping relationships. An example is presented below.

Components are defined with their semantic interfaces in fig. 9. Given knowl-
edge of the interface role subtyping relationships in fig. 8, compatibility relation-
ships and goal opportunities can be analyzed efficiently. Interoperable, comple-
mentary components can be found with which services can be performed, while
incompatible components can be avoided:

– X looks for components that are compatible with the UserCall.Callee interface.
This is obviously Y, since it subscribes to that interface. It is also W because
UserCallW.CalleeW is an extension of UserCall.Callee, as shown in fig. 8.

– Y looks for components that are compatible with the UserCall.Caller inter-
face. Component X can be found, but not Z, since UserCallW.CallerW is
incompatible with UserCall.B.

– Z looks for components compatible with UserCall.CalleeW. Component W
can be found, but not Y, again due to incompatibility.

– W looks for components compatible with UserCall.CallerW. Z is compatible
and can achieve all the goals of UserCallW. X is compatible, but can only
reach the goals of UserCall that are without the WaitOnBusy feature.

Given the subtype relationships calculated at design time, one can search for
components with compatible interfaces, and determine that they satisfy safety
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and liveness properties and therefore have the possibility of reaching service goals
when interacting.

Discovery of complementary components is a static comparison of semantic
interfaces of component types. It does not take the current state of components
into consideration. The objective is not to discover or learn new behavior, an
issue we discuss below.

Note that component interfaces can be classified as either initiating (“client”
side) or offered (“server” side), depending on which interface is designed to take
the first initiative in the collaboration. This can be exploited to simplify the
discovery procedure, since a component is only interested in finding compatible
offered interfaces.

3.4 Role Learning

Given knowledge of what interface roles are deployed in its environment, it may
be desirable for an actor object to learn new behavior so that it can achieve more
service goals when interacting with components towards its environment. It can
for example use a lookup mechanism to search for service components that give
a better match against offered roles: components that can achieve more progress.

Given a service brokering function or registry, an actor may perform a re-
quest for a component that can enable it to take part in a new service or a
“better” service than previously. This will require that a new component with
new semantic interfaces is downloaded. A possible collaboration pattern for this
is depicted in fig. 10.

In fig. 10, a component X sends a request to component W to play a User-
Call.Callee role. The role request is confirmed, since W is capable of a consistent
collaboration with X. However, in the role confirmation, W supplies a description
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of its interface behavior CalleeW. As described earlier, CalleeW extends Callee
with WaitOnBusy functionality. In step 3, X consults a service broker to check
for the existence of a service component that is a better match for CalleeW than
Caller, i.e., a service component that can achieve more service goals. Note that X
supplies a description of its semantic interface Caller. Steps 4 thru 6 result in the
service component CallerW being identified and retrieved from an appropriate
service provider. X has thus improved its functional repertoire by obtaining the
CallerW component.

Whether X casts away the Caller component is an open issue; remember
that CallerW cannot collaborate safely with Callee components, so the Caller
component may be useful in another context. The example also does not indicate
what component is used in the collaboration with W. Which component to select
can be decided in the Invite phase of the call. Figure 10 illustrates how this
may be accomplished by replacing the Invite signal by an interaction consisting
of a RoleRequest(requested-role) signal and a RoleConfirm(granted-role) signal.
Compared with existing lookup services, the enhancements lie in the description
of the semantic interface, and the learning factor made possible by issuing and
granting role requests [4, 12].

4 Conclusions

We have described and illustrated how semantic interfaces, composed of behav-
ior expressions annotated with goals, can be used for the selection of services
and of components while satisfying the liveness properties of the collaboration.
This improvement over the use of static interfaces by existing service discovery
mechanisms prevents the selection of services that would lead to unsatisfactory
or even dangerous behavior. Goals can be attached to behavior models at vari-
ous levels of abstraction, for instance to UML 2.0 activity, interaction, or state
diagram elements (or respectively to UCM, MSC, and SDL model elements).
Subtyping relationships such as extensions and reductions, together with role-
based projections, enable the efficient comparison between desired collaboration
behavior and available services and components. Semantic interfaces can sup-
port service selection but also more advanced discovery functionalities such as
role learning.

The telephony example used here illustrates in simple terms the description
and selection mechanisms. However, applications for such technology are not
limited to telecommunication. We anticipate practical use in many convergent
services, where information technology services and telecommunication services
unite (such as Web services and grid services, applied to many vertical domains).

Due to the well-defined projection relationship between component behav-
ior and semantic interfaces, it is possible to provide tool support for deriving
semantic interfaces, and for checking compatibility between semantic interfaces
and component behaviors. We have developed prototype tools to demonstrate
this. Rather than being an additional burden for the service engineer, semantic
interfaces may be integrated into the service engineering process in ways that
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can support both productivity and quality. Scalability of the approach follows
from the relative simplicity and compositional nature of the compatibility checks
needed among component instances. These checks can be limited to checking
compatibility among semantic interfaces, which may be pre-calculated for com-
ponent types and interface types at design time.

Service discovery as outlined here relies on well-defined interface names and
maps over inheritance relations between semantic interfaces. It also relies on a
common understanding of goals and the relationship between goals, services and
service features. One way to achieve this would be to define a suitable ontology
over goals, services, and features, using approaches suggested in the semantic
Web community [15]. In order to enable service discovery across different service
providers, this ontology must be shared. We plan to investigate how emerging
standards like the Web Ontology Language (OWL) [18] could improve the de-
scription of semantic interfaces and be used to allow matches across different
domains.
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Abstract. Today, simulators for the performance evaluation of net-
worked systems are seldom integrated with tool environments used for
system development and maintenance. This requires the system devel-
oper to establish and maintain separate code bases for simulation and
production purposes, a tedious and error-prone task. In this paper, we
present ns+SDL, an extension of the network simulator ns-2 to combine
SDL design specifications with ns-2 network models. ns+SDL enables
the developer to use SDL design specifications as a common base for the
generation of simulation and production code. Furthermore, the same
SDL-to-C code generator is used to generate this code. Both measures
increase confidence that the results of the performance evaluation hold
for the networked system in operation. Another important aspect is the
composition of SDL systems and existing ns-2 simulation components, in
particular, components implementing detailed timed models of existing
communication technologies. We illustrate the application of ns+SDL
by a simulation of DSDV, the Destination-Sequenced Distance-Vector
routing protocol, over WLAN.

1 Introduction

A crucial part of any system development is the evaluation of the system’s per-
formance, for instance, by regarding throughput and delays in a variety of typical
execution scenarios. This is especially relevant for the assessment and compari-
son of networked systems, or protocol mechanisms such as routing and quality
of service provision. In many cases, performance evaluation is achieved through
simulation experiments, which requires a suitable simulation tool environment.

Today, system development is based on formal design languages such as
SDL [5], and tool support for the creation, maintenance, validation and au-
tomatic implementation of system designs, as in the TAU environment [8]. With
these tools, the functional behaviour of the specified system can be analyzed.
To assess system performance, additional tool support is used. Existing simula-
tors such as the network simulator ns-2 [9] require the developer to extend the
code base of the simulator by an implementation of the system that is to be
evaluated. As these simulators are often not integrated with existing tools for
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the generation of production code from system designs, system implementations
have to be hand-coded. This has the following drawbacks:

– Hand-coding for simulation purposes substantially adds to the overall devel-
opment effort, and is error-prone.

– The fact that the simulation code is different from the production code
reduces confidence that the results of the performance evaluation hold for
the system in operation.

– System design, production code and simulation code have to be kept con-
sistent both during system development and system maintenance, which is
extremely difficult under the tight time constraints in practice.

In this paper, we present a solution that builds on SDL design specifications as a
common code base for simulation and production purposes. From this code base,
C code is automatically generated, using the mature SDL-to-C code generator
Cadvanced of the TAU environment [8]. Since the same code generator is used for
generating simulation and production code, it can be expected that the results
of the performance evaluation faithfully reflect the behaviour of the system in
operation.

To use this generated code for performance simulations, we have devised and
implemented several extensions to the network simulator ns-2, a well-known and
freely available simulation environment. The ns-2 library already contains sim-
ulation components modelling the timing behaviour of existing communication
technologies, such as WLAN. If it can be assumed that the system performance
is determined by its underlying communication technology so that processing
capacity is not a bottleneck, the performance of higher level protocols and net-
worked applications, functionally specified with SDL, can be studied. When com-
bined with a suitable SDL environment package that supports the complete in-
terface of ns+SDL, all system nodes may use their own configuration and log
files. The SDL Environment Framework introduced in section 3 provides this
capability. With this support, the effort required for performance simulations of
networked systems is substantially reduced. Especially when systems are devel-
oped incrementally, the simulation support of ns+SDL is a valuable addition to
existing tool chains.

At Humboldt University Berlin, the SDL Integrated Tool Environment (SITE)
with compiler components for the target languages C++ and Java is being de-
veloped [6]. Additional tool support for the simulation of SDL systems based on
code generation with SITE is described in [1]. A drawback here is that compiler
components such as code generation are “not published because of stability,
insufficient documentation and project-specific licensing” (see [6]). Also, only
self-contained SDL systems can currently be simulated, excluding, for instance,
the simulation and fine-grained control of multiple SDL systems communicating
via an external network simulator, or the use of simulation components from
different sources.

Recently, a tool environment for performance simulations based on SDL spec-
ifications has been developed at the University of Aachen [2, 7]. This environment
consists of the SDL Performance Evaluation Tool Class Library (SPEETCL), the
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SDL-to-C++ compiler SDL2SPEETCL for the generation of simulation code,
and the Graphical Interactive Simulation result Tool (GIST). When applied
together with the TAU environment, SDL design specifications can serve as a
common code base for the generation of simulation and production code. A draw-
back is that since the compilers used for generating simulation and production
code are different, the degree of confidence that the results of the performance
evaluation hold for the system in operation is reduced.

The rest of this paper is organized as follows. In section 2, the basics of the
network simulator ns-2 are briefly surveyed. In section 3, we present the struc-
ture and operation of ns+SDL, the network simulator for SDL systems. We illus-
trate the application of ns+SDL to simulate DSDV, the Destination-Sequenced
Distance-Vector routing protocol, over WLAN in section 4 and present conclu-
sions in section 5.

2 The Network Simulator ns-2

For the simulation of computer networks, in particular, TCP, routing, and mul-
ticast protocols over wired and wireless networks, the network simulator ns-2
has been developed at the Information Sciences Institute of the University of
Southern California [9]. The source code of ns-2 is freely available under the
terms of a BSD style license. ns-2 is an event-based simulator, consisting of a
simulation framework and a set of simulation components that can be config-
ured in a flexible way, yielding an executable simulation system. The simulation
framework is structured into the ns scheduler, a set of configurable ns nodes and
a library of predefined components. Figure 1 gives an overview on the structure
of typical ns-2 simulations.

As shown in fig. 1, every ns-2 simulation consists of a global ns scheduler,
multiple ns nodes and ns links between them. The typical components of an ns
node are an ns agent, a simulated application, routing functionality, a link layer,
and the simulated network adapter(s) (Mac/Phy Layer). Most of these compo-
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ns link

ns scheduler

Application Layer

Transport Layer

Link Layer

Mac/Phy Layer

Routing Layer

ns agent

Transport Layer

Link Layer

Mac/Phy Layer

Routing Layer

Application Layer

Fig. 1. Simplified structure of the ns-2 simulations
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nents must be contained in every ns node; however, it is possible to implement
them without any functionality, for example, if routing is not required in a given
simulation. ns-2 ships with a large library that already contains components
covering a large variety of simulation scenarios.

The global ns scheduler controls all events during a simulation. Two types of
events can be distinguished. First, there are prescheduled events, which are read
from a user provided tcl script during simulation. Second, internal events such
as the reception of packets from the network are generated during simulation
runs. To simplify the use of the ns scheduler for developers of ns components,
ns timers can be used to wrap the scheduler interface, providing a more flexible,
object oriented interface.

Each ns node contains one or more protocol stacks. In the application layer,
communication traffic according to specific application profiles is generated. So-
called ns agents are responsible for providing the functionality of higher level
protocols, whereas the lower layer protocols are combined into the ns link layer.
Originally, ns links were introduced to model the different types of physical
links between nodes in a wired network. In the case of wireless communication,
a component representing the virtual broadcast medium is used instead of ns
links.

Currently, simulator components for many possible scenarios and technolo-
gies are available, including wired and wireless LAN (IEEE 802.3, IEEE 802.11),
routing mechanisms (DSDV, AODV, TORA), transport protocols (TCP, UDP),
and simulated applications. By composing these components in different ways,
a large variety of scenarios can be obtained. The composition is defined in a
tcl script that controls the entire simulation. Besides configuring the simulation
components, the tcl script also contains all prescheduled events such as move-
ment patterns and the control of specific applications.

3 Time Base, Structure and Operation of ns+SDL

ns+SDL, the network simulator for SDL systems, is an extension of ns-2 that
enables developers to use code generated by the mature SDL-to-C code generator
Cadvanced of the TAU environment [8] for performance simulations of networked
systems. In this section, we give a survey of the time base, the structure and the
operation of ns+SDL.

3.1 Time Base of ns+SDL

ns-2 supports both real-time and simulation-time scheduling of simulation events.
Real-time scheduling is preferable when the system under simulation is incor-
porated into an environment that consists of real applications and/or physical
communication networks. In cases where this is not feasible, for instance, if the
system under simulation is too complex to be simulated under real-time con-
straints or a physical environment is not required, the simulation-time scheduler
of ns-2 can be used. A drawback is that ns-2 components for the simulation of
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the environment (such as traffic generators or detailed simulation models) have
to be supplied, which adds to the development effort and requires calibration ex-
periments to achieve a high degree of confidence into the simulation results. On
the other hand, simulation-time scheduling enables full control of simulations,
which become reproducible.

As ns-2, ns+SDL offers both real-time and simulation-time scheduling, the
latter being the default. The choice is made by the system developer when pro-
viding the tcl script controlling the simulation run. Since SDL assumes a global
time, a common time base for all simulation components has to be supported.
ns+SDL synchronizes the time of ns-2 (either simulation-time or real-time) with
the time of all SDL systems that form part of a simulation. Details on how this
synchronization is achieved are given in section 3.3.

3.2 Structure of ns+SDL

ns+SDL is an extension of the network simulator ns-2 that supports perfor-
mance simulations of networked systems based on simulation code generated by
TAU Cadvanced. This extension consists of several ns-2 simulation components
replacing predefined simulation functionalities, an SDL kernel for the interaction
between ns-2 and an SDL system, and an environment package for SDL systems.

Additional ns-2 Modules: The ns scheduler assumes the simulation archi-
tecture shown in fig. 1, which consists of several protocol layers with individual
interfaces. In order to avoid modifications to the scheduler, we have adopted
this architecture. Basically, simulation code generated from SDL design specifi-
cations can replace each of the ns components in each of the protocol layers. For
instance, routing code generated from an SDL specification can be incorporated
into the routing layer (see fig. 1). This, however, requires that for each layer,
an individual interface between the ns scheduler and the corresponding SDL
simulation code is provided.

Without loss of functionality, we have devised a different solution (see fig. 2).
The basic idea is to place all SDL simulation code into the ns agent, and to have
ns components in the protocol layers below. This offers the following flexibility:

– Protocol layers (routing layer, link layer etc.) may be configured from existing
simulation components of the ns-2 library (see section 2), as usual.

– The code of the upper layers including the application (called SDL system
in the following) may be generated from an SDL design, and, together with
a suitable interface, may replace the ns agent.

– If routing protocols are designed with SDL, the generated simulation code
can be placed into the SDL system. In this case, a routing layer without
any functionality is needed as a placeholder in the actual routing layer. In a
similar way, the link layer can be treated.

To implement this solution, we have developed the following ns modules (see
fig. 2) and have added them to the ns library:
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Fig. 2. Simplified structure of simulations with ns+SDL

– SDL Agent: This module replaces the ns agent and the simulated application
(see fig. 1). When triggered by the ns scheduler, it loads the SDL module
under simulation.

– SDL RoutingAgent: This module acts as placeholder, if the routing protocol
is part of the SDL system. When triggered by the ns scheduler due to the
reception of a packet, it forwards the packet to the SDL system.

– SDL LinkLayer: This module acts as placeholder, if the SDL system under
simulation provides a link layer protocol, and ensures that raw data are sent
through the network.

The SDL RoutingAgent and SDL LinkLayer modules bypass ns-2’s strict treat-
ment of connections. The original version of ns-2 requires all connections to be
established from within the tcl script. With the additional modules, the SDL
system may set up connections dynamically. Since for ns-2, SDL systems appear
as simulated applications, the developer may specify functionalities in SDL that
otherwise would have to be implemented in C++.

We have implemented further modules that provide suitable abstractions and
interfaces to ns-2 and therefore are of interest for developers:

– Ns2 ExtPart: This module contains the generic functionality to attach ex-
ternal parts to ns-2. These external parts may be implemented using any
language, as long as the message formats are observed. Currently, only SDL
systems use this generic functionality.

– Ns2 ExtAgentPart: This module contains functionality that is specific for
attaching external agents to ns-2.

– Ns2 Time: This simple module provides an interface to the ns-2 time base,
used by the Ns2 ExtPart module.

– Ns2 Timer: This is a simple ns-2 timer that is used by Ns2 ExtPart to handle
the timer requests from the external (SDL) systems.

The SDL Kernel: SDL modules are structured into an SDL kernel, an SDL
environment (see the following section), and the actual SDL system that is gen-
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erated from the SDL design specification (see fig. 3). The SDL kernel has the
following responsibilities:

– Dispatching of SDL transitions: The SDL kernel triggers the transition sched-
uler, which is already part of the TAU runtime library, and dispatches sched-
uled transitions.

– Handling of messages between different SDL systems: Message exchange be-
tween different SDL systems is controlled by ns-2. As part of this message
exchange, the SDL kernel provides encoding and decoding functions to and
from ns-2.

– Handling of control messages: Control messages are exchanged between ns-
2 and the SDL kernel to, for instance, query the system time or to return
control to ns-2 after all pending transitions have been executed.

– Time synchronization between ns-2 and the SDL system: To support a global
time, the time of ns-2 is synchronized with the time of all SDL systems under
simulation.

To make simulation runs reproducible, concurrent behaviour has to be avoided,
which is achieved by two measures. Firstly, the tight synchronization between
ns-2 and the SDL kernel ensures that only one SDL system is executed at any
point in time. Secondly, the ns-2 scheduler ensures that transitions that are
fireable at the same simulation instant, for instance, due to the simultaneous
expiration of SDL timers, are executed sequentially (see section 3.3).

The SDL Environment Framework: To implement open SDL systems (sys-
tems interacting with their environment), an environment interface satisfying
the semantics of the SDL signalling mechanism is needed. When using the TAU
tool chain, manual coding steps are required in order to supply this interface
(also called environment functions). In general, the environment interface de-
pends on a variety of aspects, such as the type of interaction supported by
the environment (message passing, method invocation), the interaction formats,
and the communication service (connection-oriented, connection-less, address-
ing). In [4], we have presented APIgen, a tool that, based on a set of SDL in-
terfacing patterns, is capable of generating a tailored environment interface for
various communication technologies (such as TCP sockets, CAN, UART/TP).

In the context of performance simulations, signal exchange among open SDL
systems is via ns-2, possibly involving ns-2 components of different communi-
cation layers (see Figure 2). Instead of extending APIgen, we have developed a
generic, specification independent environment package called SDL Environment
Framework that is placed between the SDL system and ns+SDL as shown in
fig. 3. On the one hand, the SDL Environment Framework supports the SDL
signaling mechanism, on the other hand, it plugs into the ns+SDL interface.
This way, SDL signals can be exchanged between open SDL systems via a net-
work configured from ns-2 components. Also, individual configuration and log
files for multiple SDL systems can be used, which offers the possibility to define
prescheduled events on a node by node basis.
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The SDL Environment Framework can be configured by using the TAU tar-
geting expert to either interface to the ns-2, or to physical hardware. This has
the advantage that code for simulation and production purposes can be auto-
matically generated from the same SDL specification, which therefore serves as
a common code base, with the same code generator, the TAU Cadvanced SDL-
to-C compiler.

3.3 Operation of ns+SDL

Simulations consisting of multiple SDL systems and ns-2 components are con-
trolled by the ns scheduler. A possible configuration is shown in fig. 3, with two
SDL modules consisting of SDL kernel, SDL environment interface and SDL
system, and the ns-2 consisting of ns scheduler and possibly further ns-2 com-
ponents.

Loading of SDL modules, which form part of an SDL Agent (see fig. 2), is
controlled by a user provided tcl script. For each SDL module, a new memory
context is created. This prevents variables (used for example as input queues)
being shared between several SDL systems. However, it also requires other mech-
anisms for interprocess communication. We are using named pipes for the ex-
change of signals and commands between SDL modules and the ns-2, as shown
in fig. 3. Alternatively, sockets could be used for this purpose, but would result
in a substantially larger simulation overhead.

After an SDL module has been loaded, the SDL kernel issues a READY
message to ns-2, signalling that the SDL system under simulation is ready to
select and execute transitions. Execution control is passed between ns-2 and the
SDL system in one of the following ways:
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– A control message RUNSYSTEM REQ is sent to the SDL kernel. This hap-
pens, for instance, when a run-command starting the SDL system is read
from the tcl script, or if an external SDL signal to the SDL system has ar-
rived (see below). After all enabled transitions have been fired, execution
control is returned by a message RUNSYTEM RSP.

– A control message TIMER EXPIRED REQ is sent to the SDL kernel. This
happens when a timer event has been previously created by the SDL system
(see below), and system time has advanced such that the timer expires.
After all enabled transitions have been fired, execution control is returned
by a message TIMER EXPIRED RSP.

While execution control is with an SDL system, further control messages between
the SDL kernel and ns-2 may be exchanged. If, for instance, timers are set
during a transition, ns-2 is notified to create and record a corresponding timer
event. Also, signals of the SDL system under simulation to its environment are
forwarded to ns-2 via the SDL kernel:

– querying the current system time
Before the execution of a transition, the SDL system queries the current sys-
tem time. The code for this query is automatically generated by Cadvanced
during compilation of the SDL specification. To support a common time
base, the request is forwarded to ns-2 by means of a GET TIME REQ mes-
sage, which returns a GET TIME RSP message carrying the current system
time. This way, global time as required by SDL is effectively realized.

– setting and resetting timer events
After all enabled transitions have been executed, the SDL system deter-
mines the next expiration time of all currently active timers. The code for
these computations is automatically generated by Cadvanced. If there is an
active timer, the next expiration time is forwarded to ns-2 by means of a
SET TIMER REQ message. On reception of this message, ns-2 creates a
timer event, adds it to the event list, and returns a handle to the timer event
by sending a SET TIMER RSP message. This handle is used by the SDL
system in cases when the timer event needs to be cancelled due to a reset.
Cancellation of timer events is done by a RESET TIMER REQ, followed by
a RESET TIMER RSP.

– signal output to the environment
If an SDL signal is sent to the environment, for instance, to another SDL
system via a simulated network, the SDL environment forwards it to the
SDL kernel. The kernel in turn issues a SIGNAL OUTPUT REQ carrying
the signal as parameter to ns-2, which, after recording the signal in the event
list, returns a SIGNAL OUTPUT RSP. Execution control remains with the
SDL system until all enabled transitions have been fired. Delivery of the SDL
signal is then controlled by ns-2.

– signal reception from the environment
Signal events trigger the delivery of SDL signals that have previously been
sent to the environment. Delivery is controlled by ns-2, by issuing a
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SIGNAL DELIVERY REQ carrying the signal as parameter. The SDL ker-
nel forwards the signal to the SDL system and returns a signal called SIG-
NAL DELIVERY RSP.

4 Application of ns+SDL to Evaluate the Performance
of DSDV over WLAN

To illustrate the use of ns+SDL, we evaluate the performance of DSDV, the
Destination-Sequenced Distance-Vector routing protocol for mobile networks [3],
over WLAN. We start with an overview of DSDV and the structure of the SDL
specification used as code base. Then, we explain the simulation scenario, and
present some simulation results.

4.1 The DSDV Routing Protocol

DSDV, the Destination-Sequenced Distance-Vector protocol [3], is a routing pro-
tocol especially focused on mobile ad-hoc networks. It is assumed that each
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mobile host, while running its applications, also serves as a specialized router.
DSDV builds on an aggregated network status given by a distance vector, such as
the Bellman-Ford mechanism, which is periodically shared with the immediate
neighbors. Each routing entry is tagged by a sequence number that originates
from the destination node (hence the name of the protocol). A mechanism based
on this sequence number is used to prevent routing loops and the count-to-
infinity problem.

DSDV is a proactive routing protocol, which means that the network sta-
tus is determined and maintained regardless of the existence of route requests.
This leads to a fixed amount of network traffic for routing management pur-
poses. Each DSDV protocol instance periodically (for example every 15 seconds)
broadcasts its complete routing table to its local neighbors (called full dump).
Additionally, it may broadcast a subset of the routing table, for instance, new or
modified entries, depending on their importance, at any time (called incremental
dump).

As mentioned in section 2, ns-2 already contains a DSDV component, which
may be used for performance simulations. However, to obtain a common code
base, we have specified DSDV with SDL. As shown in fig. 4, we have decomposed
the instances of the DSDV routing protocol into four SDL blocks. DSDVcore
determines, records and maintains the network status. AppPacketForwarding
sends and receives PDUs from and to the application layer. PacketDistributor
performs encoding and decoding of PDUs, and associates incoming packets with
SDL processes. Finally, Fragmentation segments and reassembles packets trans-
mitted via the local network. To encode and decode data transmitted via the
local network, we use ASN.1.

4.2 Overview of the System Under Simulation

In the simulation, the performance of DSDV in a lecture hall scenario with 400
students is evaluated. Each student carries his own WLAN device, forming a
stationary node of the resulting network. We assume that in this scenario, all
nodes are within reach of each other. DSDV is used to establish multi-hop routing
within an ambient network covering a broader range, say, the university campus.

Each system node runs a DSDV protocol instance, and optionally, a simulated
application. Depending on the type of a node, a CBR (constant bit rate) traffic
generator or a receiving application is added on top of the protocol stack. In fig. 5,
an excerpt of the system topology illustrating the different node types is shown.
All nodes communicate via wireless LAN, and use DSDV for packet routing.
Nodes without an application component are available for routing purposes.

The shaded parts of fig. 5 represent the SDL Agents, i.e., those parts of the
simulation that take the place of ns agents in the simulation (see figs. 1 and 2).
Link layer, MAC layer and PHY layer are simulated by ns components. For the
simulation of wireless networks following the IEEE 802.11 standard (WLAN),
we have devised and calibrated a new ns component. This component is a more
accurate model of the WLAN standard and has been used in the performance
simulations described in the following section.
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Fig. 6. Sample tcl script (excerpt)

To obtain tcl scripts and traffic patterns, we have applied generation tech-
niques. fig. 6 shows an excerpt of a tcl script, where for every node, an SDL agent
is created and initialized. ns-2 is requested to load the SDL system dsdv sdl. For
every SDL system, a configuration file and a log file are set. After all SDL sys-
tems have been loaded, the tcl command run is executed at simulation time 1.2,
passing execution control to the SDL kernel (see section 3.3).
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4.3 Results of the Performance Evaluation

In the simulations discussed in this section, we have analyzed the scalability of
DSDV over WLAN in areas with many visible nodes. The period for full dumps
has been set to 15 seconds. To achieve an equal distribution of full dumps, we
have equally spread the starting of nodes over this period.

Figure 7 shows started nodes in relation to known neighbors. All nodes broad-
cast their address during startup. Without bandwidth limitations, the number
of known neighbor nodes should equal the number of started nodes. Figure 7
indicates that when placed on top of WLAN, the management traffic generated
by DSDV quickly absorbs the available resources. The effect is that the number
of known neighbors quickly falls behind the number of started nodes.

As shown in fig. 8, the amount of received data (inbytes) increases with the
offered routing traffic (outbytes) for about 4 seconds, and then drops to approx-
imately 30.000 bytes per second. This is a clear sign for an overloaded medium,
an indication that DSDV is not well suited for the simulated environment. Since
the network is already overloaded with the protocol traffic generated by DSDV,
there are no capacities remaining for the application layer.

Fig. 7. Started nodes versus
known neighbors

Fig. 8. Received traffic versus
attempted sending traffic
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5 Conclusions

In this paper, we have presented ns+SDL, an extension to the well-known net-
work simulator ns-2 to combine SDL design specifications with ns-2 network
models. ns+SDL enables the developer to use SDL design specifications as a
common code base for the automatic generation of simulation and production
code. This substantially reduces the effort required for performance simulations
of networked systems, as hand-coding for simulation purposes is avoided. Fur-
thermore, with TAU Cadvanced, the same SDL-to-C code generator for simula-
tion and production code is used. This boosts confidence that the results of the
performance evaluation faithfully reflect the behaviour of the networked system
in operation.

ns+SDL is fully compatible with ns-2, since no modifications other than ex-
tensions have been made. This enables the system developer to use all features of
ns-2 when configuring and simulating networked systems. In addition, individual
protocol layers may be replaced by implementations obtained from state-of-the-
practice development tools in a flexible and fine-grained way. For instance, it is
possible to load and simulate multiple SDL systems, and to link them to ns-2
simulation components, in particular, components implementing detailed timed
models of existing communication technologies. In combination with the SDL
Environment Framework, all system nodes may use their own configuration and
log files, to define, for instance, different network topologies, communication
technologies and movement patterns (in case of a mobile network). To illustrate
the features of ns+SDL, we have specified DSDV, the Destinations-Sequenced
Distance Vector routing protocol, and made a performance evaluation on top of
a simulated wireless LAN.
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Abstract. The language of MSC diagrams is widely used for the speci-
fication of communicating systems, the design of software and hardware
for real time and reactive systems, and other industrial applications. Of-
ten it is used as an abstraction of systems specified in SDL or UML (in
the form of sequence diagrams). In this paper, a novel representation of
the semantics of message sequence charts is described. This formulation
has been developed to enable the implementation of tools aimed at the
verification of requirements for interactive systems. Our definition of the
formal semantics of the language of MSC diagrams relies on the theory of
interaction of agents and environments. This approach helped to simplify
the definition of the semantics in comparison to other approaches based
on highly sophisticated process algebras and it brought the definition of
the semantics closer to possible implementations.

1 Introduction

The language of Message Sequence Charts (MSC diagrams) is widely used for the
development of communicating systems, and for the design of software and hard-
ware for real time and reactive systems [1]. MSC is an asynchronous language
without an explicit notion of time. To enable the development of tools for the
verification of highly reliable systems, a formal semantics of the language which
can be easily implemented must be available. To define the formal semantics of
MSC diagrams, we relied on a new semantic approach based on the theory of
interaction of agents and environments [3, 4, 5]. This approach greatly simplified
the definition of the semantics in comparison to conventional approaches based
on highly sophisticated process algebras, such as that of Reniers [6]. In addi-
tion, the definition of our semantics is much closer to possible implementations
and thus simplifies its realization in tools. Moreover, this semantics is easy to
modify and new features can be added easily. For example, we have also devel-
oped extensions of this semantics representing timed message sequence charts
and an algorithm for checking time consistency, albeit these are not discussed in
this paper.
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Our definition is represented in the form of a calculus which defines transitions
for an untimed MSC environment. In section 2, we review the theory of agents
and environments. Section 3 gives the semantics of MSC diagrams. In section 4
we briefly outline the translation of MSC diagrams to MSC processes. Finally,
in section 5, we give an example of computing the meaning of an MSC diagram
following the presented semantics.

2 Agents and Environments

MSC diagrams describe interacting entities or instances. Mathematically, these
entities are represented by means of labeled transition systems with divergence
and termination, considered up to bisimilarity. These transition systems, which
we shall refer to as agents, execute in an environment. Environments are agents
supplied with an insertion function, which describes the change of the behavior
of an environment after inserting an agent into this environment.

2.1 Agents

Agents are objects which can be recognized as separate from other agents and
their environment. They can change their internal states and interact with other
agents and their environments, performing observable actions. The notion of an
agent formalizes such diverse objects as software components, programs, users,
clients, servers, active components of distributed knowledge bases, or similar.

Agents with the same behavior are considered as equivalent. The equivalence
of agents is characterized in terms of an algebra of behaviors F (A) which is a free
continuous algebra (algebra with approximation) with two sorts–actions a ∈ A
and behaviors u ∈ F (A). The operations of this algebra are non-deterministic
choice u + v, u, v ∈ F (A), which is an associative, commutative and idempotent
binary operation, and prefixing a.u ∈ A, a ∈ A, u ∈ F (A). The approximation
relation � on a set of behaviors is a partial order such that these two operations
are continuous. The algebra F (A) is closed relative to the limits (least upper
bounds) of the ordered sets of finite behaviors. Consequentially, the minimal
fixed point theorem can be used for the definitions of infinite behaviors. Finite
elements are generated by three termination constants: Δ (successful termina-
tion), ⊥ (the minimal element of the approximation relation), and the deadlock
element 0.

Behaviors can be considered as states of a transition system by interpreting a
transition u

a−→ u′ to mean that u = a.u′ +v for some behavior v. Compositions
described by the various kinds of process algebras (including parallel and sequen-
tial composition) can be defined through continuous functions over the behavior
of agents. For example, to define parallel composition, an algebraic structure
on the set of actions is leveraged to define synchronization operations in the
action algebra. In this paper we shall use only interleaving for the definition of
parallel composition; thus the set of actions is a flat set (without synchronizing
operations).



Semantics of Message Sequence Charts 119

Each behavior u ∈ F (A) over an action algebra A can be represented in the
form

u =
∑
i∈I

ai.ui + ε

where ai are actions, ui are behaviors, the set I is a finite or infinite set of indices,
and the termination constant ε is either Δ, ⊥, Δ + ⊥, or 0. If all summands in
this representation are different, then this representation is unique up to the
associativity and commutativity of non-deterministic choice.

2.2 Environments

An environment E is an agent over an algebra of actions C with an insertion
function. The insertion function is a function of two arguments written as e[u].
The first argument e is a behavior of an environment, the second is a behavior
of an agent over an action algebra A in a given state u (the action algebra of
agents may be a parameter of the environment, if needed). An insertion function
is an arbitrary function continuous in both of its arguments. Its result is a new
behavior of the same environment.

Using the notion of an environment, we define a new type of agent equivalence
which is in general weaker than bisimilarity: insertion equivalence depends on an
environment and its insertion function. Two agents (in given states) or behaviors
u and v are insertion equivalent with respect to an environment E, written
u ∼E v, if for all e ∈ E, e[u] = e[v]. After the insertion of an agent into an
environment, the new environment is ready to accept new agents to be inserted.

2.3 Insertion Function

To define insertion we use rewriting rules in the algebra of behaviors. Each rule
has one of two forms:

F (x)[G(y)] −→ d.F ′(z)[G′(z)]

and
F (x)[G(y)] −→ F ′(z)[G′(z)]

where x = (x1, x2, . . .), y = (y1, y2, . . .), z = (x1, x2, . . . , y1, y2, . . .), x1, x2, . . .,
y1, y2, . . . are action or behavior variables, d ∈ C (C is an action algebra), and
F,G, F ′, G′ are expressions of a behavior algebra, that is, expressions built by
nondeterministic choice and prefixing. The first kind of rule defines labeled tran-
sitions, the second kind of rule defines unlabeled transitions. The latter are not
observable; the definition of environment behavior includes the following rule

e[u] ∗−→ e′[u′], e′[u′] d−→ e′′[u′′]

e[u] d−→ e′′[u′′]

where ∗−→ denotes the transitive closure of unlabeled transition. Rewrite rules
must be left linear with respect to their behavior variables, that is, no behavior



120 A.A. Letichevsky et. al.

variable may occur more than once in the left hand side. We add the obvious
rules for terminal and divergent states, as well as the following condition:

e[u] d−→ e′[u′], v � u, f � e, f [v] �→ ⇒ f [v] =⊥
where f [v] �→ means that there are no transitions from the state f [v]. Under
these conditions, the insertion function defined will be continuous even if there
are infinitely many rules. This is because to compute the function e[u] one needs
to know only some finite approximations of e and u.

Rewriting rules define a non-deterministic transition relation if two different
left hand sides can be matched with the same state of an environment e[u]
(critical pairs are allowable).

3 The Environment for MSC Diagrams

An MSC agent corresponds to a set of MSC diagrams; the insertion of an MSC
agent into an MSC environment correspond to MSC references, which are the
only way to transfer control of execution between different diagrams. The en-
vironment itself can be considered as an execution engine for a set of MSC
diagrams. It synchronizes the interaction of the agents defined by those MSC
diagrams and generates all possible traces for a given set of diagrams. Figure 1
shows a simple MSC diagram: Two instances, A and B, represented by the ver-
tical lines, interact with each other by sending asynchronous messages, indicated
by the arrows running between the lines representing the instances. A message
is characterized by two events: the sending of the message, and the receiving
of the message. Reduced to its bare essentials, an instance is characterized by
the sequence of events that occur during its lifetime. Events on an instance
line are considered to be temporarily ordered, but no ordering is assumed be-
tween events occurring on different instance lines. That is, each instance executes

A B

x

y

Fig. 1. An MSC diagram
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?y?x

!y?y ?x

!x!y

!x !y?y

?x!x

!y ?y !y ?y !y ?y

(a) According to conventional process algebra semantics

?x

!y

!x

?y

(b) MSC se-
mantics

Fig. 2. Traces for the MSC diagram in fig. 1

each event on its instance line in the order in which it occurs on the line, from
top to bottom. Each instance executes its events independently of any other
instance on a diagram. If we label the event of sending message x as !x, the
receiving of message x as ?x, and so on, and interpret the diagram in fig. 1
based on ordinary process algebra semantics, then the traces in Figure 2(a) are
induced.

However, an MSC diagram describes the transitive closure of the orderings
between the events, subject to the constraints that a message must be sent before
it is received. Consequentially, the explication of the semantics of MSC diagrams
must yield the single trace shown in fig. 2(b) as the meaning of the MSC of fig. 1.
(An MSC diagram may contain events other than message interactions, and there
are special constructs which remove the ordering constraint for an instance line,
which are discussed below.)

The doctoral thesis of M.A. Reniers [6] which is based on the Algebra of
Communicated Processes [7] is probably the best known explication of the se-
mantics of MSC. Reniers defined the operators of his algebra operationally in
the style of [8]. He introduced the following operators to capture the semantics
of MSC diagrams: Delayed choice expresses the meaning of MSC alternatives,
generalized parallel composition allows to combine several instances into a di-
agram, generalized weak sequential composition gives the vertical composition
of events on an instance line, and iteration and unbounded repetition express
looping. Altogether, 41 rules are required to specify these operators (and two
additional rules for constants). The result is a highly complex semantic descrip-
tion which is very difficult to implement; to our knowledge, no tool has been
able to implement Reniers’ semantics.
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In contrast, our approach begins with the simple set of traces induced by
conventional process algebra semantics. Taken by itself, the agent representing
the MSC diagram of fig. 1 would generate the traces shown in fig. 2(a). How-
ever, we define an environment such that, when the agent is inserted into this
environment, only the trace shown in fig. 2(b) is permitted. We call such environ-
ments MSC environment. After insertion into the MSC environment, the agent
derived from fig. 1, u = !x.?y . Δ ‖ ?x.!y . Δ, is equivalent to a much simpler
agent, v = !x.?x.!y.?y . Δ. We say that u and v are insertion-equivalent.

In addition, our semantics for MSC is different from the formulation by Re-
niers in the use of additional synchronization for conditions, references, and
in-line expressions.

3.1 The Structure of MSC Environments

To create the environment one must define both the actions of agents and en-
vironment and the insertion function. The insertion function will be described
through a calculus for the transition relations of the environment. To textually
express message sequence charts we rely largely on the event-oriented syntax of
MSC defined in the Z.120 standard [1], as shown in Figure 3.

In Figure 3, i and j are instance names, J is a set of instance names, m
is a message expression, b is an expression describing an action or condition,
t is a timer expression, and z is an MSC reference expression. (The detailed
syntax of the expressions is not relevant to this paper. For example: A message
expression m may contain parameters describing structural components of the
message. A timer expression t may contain a duration. While in MSC conditions
and actions are not further interpreted, in many practical applications these are
given specific meaning and syntax.) Note that the last two forms are not part
of [1] and are not user-visible.

Feature Textual syntax

Send message i : m from j

Receive message i : m to j

Local action i : action b

Set timer i : set t

Reset timer i : reset t

Timeout i : timeout t

Instance start i : instance

Instance creation i : create j

Instance stop i : stop

Condition J : condition b

Reference J : reference z

Local condition i : cond b(J)

Local reference i : ref z(J)

Fig. 3. MSC textual syntax
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We assume, without loss in generality, that all names used in an MSC diagram
are distinct. Each instance is executing in the context of an agent deriving from
an MSC diagram. If i is an instance, agent(i) is the agent executing this instance.
Each event belongs to some instance, and if a is an event, then inst(a) denotes
the instance to which this event belongs.

Message events represent communication events in the system: Instances
may receive messages, or they may send messages to other instances. The names
lost and found are always-defined instance names to allow representation of
incomplete events: A lost message is a message that is sent but will never be
received by another instance. A found message is a message where the sender
is unknown. The name env is always defined and refers to the environment of
the instance containing this event; messages may be send to the environment or
may be received from the environment.

Local events do not impact other instances. They may describe arbitrary,
not further defined actions, the setting or expiration of timers, as well as timer
resets.

Instance events describe the life-time of an instance. An instance may be
created by another instance, and an instance may stop its execution. The start
of a sequence of events belonging to an instance is indicated by the instance
start event.

Control events synchronize conditions and references across a set of in-
stances. These events are not observable from the outside environment and es-
tablish that events preceding a condition or reference on a given instance have
completed. In [1], control events are represented as “multi-instance events”, while
we represent the occurrence of a control event on each instance as a separate
event (referred to as local condition and local reference in fig. 3; the conversion
from multi-instance events to local events is performed by the translation rules
in section 4). The set of instances J indicates all instances that are synchronized
by this control event, where each instance i ∈ J .

Due to space limitations, in the following discussion gates and causal order-
ings are not considered, but the corresponding extensions are straightforward.

Note that while [1] speaks of instances as comprised of a partially ordered
sequence of events, in the explication of the semantics of message sequence charts
we will speak of sequences of actions (to remain consistent with the terminology
of process algebra). We shall use the terms “event” and “action” interchangeably,
when there is no danger of confusion.

Agents are composed from actions (events) by the standard algebraic opera-
tions (such as prefixing, sequential and parallel compositions, or non-deterministic
choice), considered up to bisimilarity. The transition rules for these operations
are as usual, but parallel composition is interpreted as interleaving.

Using this syntax, we can express the instance A in fig. 1 as

A : instance . A : x to B . A : y from B . A : stop . Δ

and the instance B as

B : instance . B : x from A . B : y to A . B : stop . Δ
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The environment states of an MSC environment will be represented by the
tuple of functions 〈O, S,R,U〉.

O is a partial function of three arguments m, i, j, where m is a message
expression, and i and j are instances. This function yields values in the set of
positive integers. O(m, i, j) = k means that earlier k message events i : m to j
occurred for which there are no corresponding receiving message events pending.
(If O(m, i, j) is undefined, there are no in message events pending.)

S is a partial function of two arguments y and J . The first argument is
a condition or reference expression, the second is a set of instances. S(y, J)
represents a nonempty subset of the set J . S(y, J) = I means that earlier a
control event i : cond y(J) or a reference event i : ref y(J) had been executed,
for all instances i ∈ I. The condition or reference event is attached to all instances
in J . In other words, S(y, J) is the set of all instances which have already been
synchronized by the condition or reference.

R is a partial function from a set of reference names. If R(x) = J , where
J is a set of instances, then the agent corresponding to reference expression x
attached to the instances in J is currently executing. Several references to the
same MSC diagram can be executed at the same time.

U is a function defined on the set of reference names. U(x) = I is a set of
all instances active in the agent deriving from the MSC diagram denoted by
reference expression x. The condition U(x) = ∅ is a termination condition for
the agent defined by the MSC diagram.

The states of the MSC environment are expressions e[P ] where e is an en-
vironment state and P is an MSC agent. The insertion function is defined so
that (e[P ])[Q] = e[P ‖ Q]. The environment in a state e[Δ] is called the empty
environment if e is an environment state. Initial states are state expressions e[P ]
where P is an MSC agent. The set of environment states is restricted to the set
of states reachable from the possible initial states. This restriction is consistent
with the insertion function, because if e′[P ′] is reachable from e[P ] then e′[P ′‖Q]
is reachable from e[P ‖ Q].

3.2 Insertion Function for MSC Environments

An environment state consists of partial functions; in the following we make
extensive use of partial functions transformations: Let f be a partial function,
then Dom(f) denotes the domain of this function. For any x, we write f(x) = ⊥
if f(x) is not defined – if x �∈ Dom(f). The operator [x := y] transforms f to a
new function f ′ such that for all z, if z �= x, f ′(z) = f(z), and f ′(x) = y. Note
that Dom(f [x := y]) = Dom(f) ∪ {x}, as x may or may not be in Dom(f). The
operator [Dom\E] deletes the set E from the domain of f , that is, it transforms
f to a new function f ′ such that Dom(f ′) = Dom(f)\E where f is an extension
of f ′.

Suspended Instances and Actions

Let e = 〈O, S,R,U〉. Instance k is called suspended in environment state e if one
of the following conditions is true, for some name y:
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1. k ∈ S(y, J), where k ∈ J or
2. k ∈ R(y)

Suspended instances are synchronized by either a condition or by a reference.
Action a is suspended in an environment state e if one of the following conditions
is true:

1. inst(a) is suspended in e,
2. i = inst(a) and k �∈ R(agent(i)).
3. for some message m and some instances i and j,

a = i : m from j and O(m, j, i) �> 0.

Each reference is invoked from the main diagram or some other uniquely
identifiable executing diagram (invoked through another reference). All refer-
ences are executing in parallel. The following restriction must be satisfied: If an
instance i is active in an executing reference x, it must be suspended in all other
currently executing references. This restriction will be satisfied if each instance
used in the reference is attached to this reference and if an instance that is shared
by two references is attached to both.

In the rules below, the environment state for e is 〈O, S,R,U〉; the environment
state for e′ is 〈O′, S′,R′,U′〉.

The necessary conditions for the existence of an environment state e′ such
that e

a−→ e′ is that action a is not suspended in e. This condition is assumed
for all rules below.

General Rules
s −→ e′ ⇒ e[P ] −→ e′[P ] (1)

e[P + Q] = e[P ] + e[Q] (2)

e[Δ] a−→ e′[Q], P
a−→ P ′

e[P ] a′−→ e′[Q ‖ P ′]
(3)

for an observable action a and

e[Δ] a−→ e′[Δ], P
a−→ P ′

e[P ] −→ e′[P ′]
(4)

for a non-observable action. (An action is non-observable if it is an incomplete
control action, see below, otherwise an action is observable. Note that the notion
of observability depends on the state of the environment.) In rules (3) and (4),
we assume that there are no hidden transitions for the environment state e[Δ].
Action a′ in (3) is different from a only if a is a control action. In this case, if a =
i : cond y(J) or a = i : ref y(J), then the observed action a′ = J : reference y
or a′ = J : condition y, respectively.

Rules for Messages and Local Actions

For a non-suspended message action or local action a, the transition

e[Δ] a−→ e′[Δ]
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is always possible. Only function O is changed as a result of this action, as
follows:

a = i : action b
a = i : m to lost
a = j : m from found

⎫⎬
⎭ ⇒ O′ = O

a = i : m to j, j �= lost ⇒ O′ = O[(m, i, j) := n + 1]
a = j : m from i, i �= found ⇒ O′ = O[(m, i, j) := n − 1]

where n = 0 if O(m, i, j) = ⊥, otherwise n = O(m, i, j).

Rules for Instance Actions

For a non-suspended instance action a the transition

e[Δ] a−→ e′[Δ]

is possible under the conditions below. Only function U is changed by this action.
Let x = agent(i), where i is an instance, then

a = i : instance, i �∈ U(x) ⇒ U′ = U[x := U(x) ∪ {i}]
a = i : create j, j �∈ U(x) ⇒ U′ = U[x := U(x) ∪ {j}]
a = i : stop, i ∈ U(x) ⇒ U′ = U[x := U(x)\{j}]

The cases which are not covered by these conditions are forbidden.

Rules for Control Actions

Finally, consider control actions i : cond y(J) and i : ref y(J), where y is a
name. A control action is complete in a state e if J = {i} or S(y, J) ∪ {i} = J .
Otherwise the action is incomplete. For a non-suspended incomplete control
action a a transition

e[Δ] a−→ e′[Δ]

is always possible. Only function S is changed as follows:

S′ = S[(y, J) := S(y, J) ∪ {i}]
For a complete control action a = i : cond y(J), a transition

e[Δ] a−→ e′[Δ]

is always possible, and S is changed as follows:

S′ = S[Dom\(y, J)]

For a complete control action a = i : ref y(J), the transition is

e[Δ] a−→ e′[Q]

where Q is a new agent derived from the MSC reference expression y. The
functions R and S are changed as follows:
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R′ = R[x := J ], where x is the name of the newly created agent Q
S′ = S[Dom\(y, J)]

Other functions do not change.

Terminate Reference Execution Rule

The following transition is always possible

U(x) = ∅ ⇒ e[Δ] −→ e′[Δ]

Only functions U and R are changed when this transition is executed:

U′ = U[Dom\x]
R′ = R[Dom\x]

4 Translation of MSC Diagrams to MSC Environment
Expressions

Each MSC diagram in a specification is considered and translated individually.
The result of a diagram translation is an expression P describing the agent rep-
resenting the MSC diagram. We begin by translating all HMSC diagrams to the
equivalent MSC diagrams involving in-line expressions. Then we can assume that
the body of each MSC diagram contains only event definitions. We change all
in-line expressions to named reference expressions introducing separate MSC di-
agrams for the MSC bodies. After this change, the only instance events involving
multiple instances are conditions and references.

The condition i1, i2, . . . : condition y attached to instances i1, i2, . . . is
changed to the set of events i1 : cond y(J), i2 : cond y(J), . . . , where J =
{i1, i2, . . .} and these new events are attached to the corresponding instances i1,
i2, and so on.

To translate a reference event i1, i2, . . . : reference y attached to instances
i1, i2, . . . , where y is an MSC reference expression containing names of the MSC
diagrams x1, x2, . . . , first translate the diagrams x1, x2, . . . obtaining the set of
MSC agents P1, P2, . . . , and then compute the function F(y, P1, P2, . . .) using
the definitions shown in fig. 4.

After this translation a name z is used as the name of the new agent resulting
from the translation of this diagram by evaluating F(y, P1, P2, . . .) and each
reference event is changed to the set of local events i1 : ref z(J), i2 : ref z(J),
. . . , where J = {i1, i2, . . .}, and these actions are attached to the corresponding
instances i1, i2, and so on.

The translation of a diagram x without in-line expressions containing only
local events on the instances i1, i2,. . . , is the agent p1 ‖ p2 ‖ . . ., where pk is a
sequential composition of local events belonging to the instance ik if there are no
coregions on this instance. For coregions a parallel composition is used instead
of sequential composition. Actions x : instance and x : stop are added at the
beginning and the end of this agent, respectively.
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F(loop〈m, n〉(E), P1, P2, . . .) = loop(m, n, F(E, P1, P2, . . .))
F(E1 alt E2 alt . . . , P1, P2, . . .) = F(E1, P1, P2, . . .) + F(E2, P1, P2, . . .) + . . .
F(opt E, P1, P2, . . .) = F(E, P1, P2, . . .) + Δ
F(E1 par E2 par . . . , P1, P2, . . .) = F(E1, P1, P2, . . .) ‖ F(E2, P1, P2, . . .) ‖ . . .
F(E1 seq E2 seq . . . , P1, P2, . . .) = F(E1, P1, P2, . . .) ; F(E2, P1, P2, . . .) ; . . .
F(exc E, P1, P2, . . .) = (F(E, P1, P2, . . .) ; 0) + Δ
F(xi, P1, P2, . . .) = Pi

loop(0, 0, G) = Δ
loop(0, inf, G) = (G ; loop(0, inf, G)) + Δ
loop(m, inf, G) = (G ; loop(m − 1, inf, G))
loop(0, n, G) = (G ; loop(0, n − 1, G)) + Δ
loop(m, n, G) = (G ; loop(m − 1, n − 1, G))

Fig. 4. Translation rules for MSC reference expressions

The names of agents are used to create the initial state e and the environment
expression e[P ], where P is the translation of the main diagram. If there is no
main diagram, the translation is e[Δ]. The function loop used above is computed
at execution time.

We use strict sequential composition instead of weak sequential composition
as it was defined in Reniers’ semantics. First, in engineering practice events are
usually considered strictly ordered. Secondly, the computation of a weak product
has high complexity and is unsolvable for recursive diagrams.

5 Examples

Consider the MSC diagram in fig. 5(a). In algebraic notation, we can express
the instances A and B as

A = A : x to B . Δ
B = B : x from A . Δ

To be more precise, A and B begin with an instance start event and end in a stop
event, but as these do not impact the examples they are omitted for conciseness.

The semantics of the example MSC is P = e[A ‖ B], that is
P = e[A : x to B . Δ ‖ B : x from A . Δ]

We can expand this to
P = e[A : x to B . B : x from A . Δ + B : x from A . A : x to B . Δ]

which by rule (2) can be rewritten to
P = e[A : x to B . B : x from A . Δ]

+ e[B : x from A . A : x to B . Δ]
Now let a be A : x to B. Since this is an output action, and a is not lost, the
transition

e[Δ] a−→ e′[Δ]
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A B

x

(a) Message passing

A B

x

z

(b) Condition

Fig. 5. Two simple MSC diagrams

is always possible. Let Q be Δ, then we can apply rule (3), and obtain
P = A : x to B . e′[Δ ‖ B : x from A . Δ]

+ e[B : x from A . A : x to B . Δ]
where e′ is obtained from e by setting O′ = O[(x,A,B) := 1] as given by the
rules for message actions. Using the algebraic law Δ ‖ P = P ,

P = A : x to B . e′[B : x from A . Δ]
+ e[B : x from A . A : x to B . Δ]

We can now apply the rule for input actions together with rule (3) and obtain
P = A : x to B . B : x from A . e′′[Δ]

+ e[B : x from A . A : x to B . Δ]
where e′′ is obtained from e′ by setting O′′ = O′[(x,A,B) := 0]. By e[Δ] = Δ,

P = A : x to B . B : x from A . Δ
+ e[B : x from A . A : x to B . Δ]

Note that x is suspended in e, as there is no (x,A,B) ∈ Dom(O) such that
O(x, a, b) > 0. Therefore, there is no transition possible for the agent state
e[B : x from A . A : x to B . Δ], and so e[B : x from A . A : x to B . Δ] = 0.
Thus we obtain

P = A : x to B . B : x from A . Δ + 0
and by P + 0 = P , we finally arrive at

P = A : x to B . B : x from A . Δ

In other words, when we insert the agent A ‖B into the MSC environment, the
behavior of that agent is restricted to the one allowed by the MSC semantics:
the instance A first sends message x, and then instance B receives this message.
The alternative behavior of the agent A ‖ B, namely B receiving the message x
before A has sent x, is not permitted by the environment.
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The MSC diagram in fig. 5(b) is expressed in algebraic notation as

A = A : cond x({A,B}) . A : action z . Δ
B = B : cond x({A,B}) . Δ

The expanded semantics of this diagram, as rewritten by rule (2) is
P = e[A : cond x({A,B}) . A : action z . B : cond x({A,B}) . Δ]

+ e[A : cond x({A,B}) . B : cond x({A,B}) . A : action z . Δ]
+ e[B : cond x({A,B}) . A : cond x({A,B}) . A : action z . Δ]

If we apply the rule for control actions together with rule (4) to the first sum-
mand, we obtain

P = e′[A : action z . B : cond x({A,B}) . Δ]
+ e[A : cond x({A,B}) . B : cond x({A,B}) . A : action z . Δ]
+ e[B : cond x({A,B}) . A : cond x({A,B}) . A : action z . Δ]

where S(x, {A,B}) = {A} in e′. Note that this action is not observed, by rule (4).
However, now A ∈ S(x, {A,B}), and therefore, A is suspended in environment
e, and no further behavior is possible for instance A. If we instead begin with
the second summand, we have

P = e[A : cond x({A,B}) . A : action z . B : cond x({A,B}) . Δ]
+ e′[B : cond x({A,B}) . A : action z . Δ]
+ e[B : cond x({A,B}) . A : cond x({A,B}) . A : action z . Δ]

where S(x, {A,B}) = {A} in e′. Note that B : cond x({A,B}) is complete in
state e′, and therefore we can transition to

P = e[A : cond x({A,B}) . A : action z . B : cond x({A,B}) . Δ]
+ A,B : condition x . e′′[A : action z . Δ]
+ e[B : cond x({A,B}) . A : cond x({A,B}) . A : action z . Δ]

where S(x, {A,B}) = ∅ in e′′. Now we can continue execution with the local
action:

P = e[A : cond x({A,B}) . A : action z . B : cond x({A,B}) . Δ]
+ A,B : condition x . A : action z . e′′′[Δ]
+ e[B : cond x({A,B}) . A : cond x({A,B}) . A : action z . Δ]

leaving the state of e′′′ unchanged. Applying the same reasoning to the final
summand, and using algebraic laws as in the example above, we determine the
meaning of this MSC diagram to be

P = A,B : condition x . A : action z . Δ

Again we can see that when we inserted the agent for MSC diagram P , the
behaviors not licensed by the MSC semantics have been disallowed.

6 Conclusion

In [9, 10, 11] we have presented an environment to verify the consistency and com-
pleteness of behavioral descriptions expressed in the form of message sequence
charts. This environment has been deployed for the verification of telecommu-
nications applications and has enabled us to verify systems that have not been
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amenable to other techniques, such as model checking, due to the large state
space induced by the specifications of these systems. In this environment, au-
tomated reasoning is performed over the semantic representation of message
sequence charts.

In this paper, we explicated the formal semantics of message sequence charts
as leveraged in our environment. The use of the semantic representation in tools
imposed two constraints on the formal definition: The presentation had to be
close to feasible and efficient implementations, as this makes a correct imple-
mentation of the semantics more likely. More importantly, the presentation had
to be flexible to introduce variations into the semantics with relative ease. Dif-
ferent subject domains require variation in the interpretation of MSC diagrams
to account for domain-specific differences. For example, while many telecom-
munication applications interact with their environment asynchronously, when
specifying embedded processors or applications interacting with the system bus,
communication is synchronous. While in many situations, the agents compris-
ing a system are executing independently and in parallel, when modeling ap-
plications on an embedded operating system, these agents are executing in a
sequential environment.

Our experience has taught us that reasoning about these systems is more
efficient (which is crucial in light of the large state spaces) when the underlying
concurrency semantics and interaction semantics are represented in a manner
close to the characteristics of the subject domain. Separating the presentation of
the semantics in a small but well-understood process algebra core and the inser-
tion function allowed us to adjust the detailed semantics of a system specification
to the actual behavior of the represented systems.

We have further developed a number of extensions to standard message se-
quence charts. We have added temporal concepts to message sequence charts,
such as time intervals between events and the specific timing of events. We have
further developed different communication styles between instances of message
sequence charts, such as queuing behavior or bounded buffers. By specifying
appropriate environments and an insertion function it was straightforward to
capture the meaning of these extensions and immediately integrate them in
our tools.

We believe that it would have been significantly more difficult to implement
our tools on a conventional semantic model, such as the process algebra presen-
tation by Reniers.
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Abstract. With the introduction of UML 2.0, many improvements to
diagrams have been incorporated into the language. Some of the major
changes were applied to sequence diagrams, which were enhanced with
most of the concepts from ITU-T’s Message Sequence Charts, and more.
In this paper, we introduce a formal semantics for most concepts of se-
quence diagrams by means of Petri nets as a formal model. Thus, we are
able to express the partially ordered and concurrent behaviour of the dia-
grams natively within the model. Moreover, the use of coloured high-level
Petri nets allows a comprehensive and efficient structure for data types
and control elements. The proposed semantics is defined compositionally,
based on basic Petri net composition operations.

1 Introduction

The long-standing and successfully applied modelling technique of Message Se-
quence Charts (MSC) [11] of ITU-T has finally found its way to the most
widely applied software modelling framework, the Unified Modelling Language
(UML) [18]. In its recent 2.0 version, sequence diagrams (SD, interaction dia-
gram) were enhanced by important control flow features. This change is one of
the major differences between UML 1.x and UML 2.0 for interaction diagrams.
Most importantly, sequence diagrams may now completely specify a system’s
behaviour, while former UML versions only provided support for describing ex-
emplary execution sequences.

We describe a Petri net based semantics of most elements of sequence di-
agrams. The semantics is built compositionally according to the structure of
the diagrams. Due to the use of Petri nets as a basic model, the inherent par-
tially ordered structure of sequence diagrams can be captured explicitly in the
semantics.

In this paper, time inscriptions in sequence diagrams are not handled by
the semantics, neither are object-oriented data structures. However, we define
a data access model and show its general capabilities. In an extended version
of the semantics we will add support for time features. Additionally, we will

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 133–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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equip activity diagrams and interaction overview diagrams with semantics based
on the same underlying model to also express object internal behaviour and
relationships between different diagrams.

Although verification of the gained semantics would be possible with standard
Petri net tools (such as the PEP tool, being developed in the authors’ group),
the main aspect of the current development is to capture behaviour, and simulate
and visualize it. In addition to the translation described in this paper, we are de-
veloping an animation environment within the P-UMLaut project [19] capable of
linking together 3D objects of the simulated world and entities in the UML model.
The 3D world will be animated driven by the Petri net simulation of the semantics.

2 Related Work

Semantics for SDs and MSCs have been investigated for quite a long time. Since
UML did not provide a properly defined semantics, most of the early papers on
semantics dealt with MSCs.

For the basic UML concepts, the reference is OMG’s standard [18], but also
a number of good books exists for UML 2.0 (such as [8, 12]). A discussion of the
major elements from interaction diagrams can be found in [23].

A thorough examination of MSC-96 regarding all details can be found in [22].
The thesis covers all MSC elements and presents a formal operational semantics.
Another approach to define a semantics for MSCs uses pomsets [14].

Due to the inherent non-interleaving semantics of MSCs and SDs, a number of
authors chose Petri nets to describe MSC semantics (such as [2, 10, 9, 15]). Most
of the papers, however, deal with communication structures only, and abstract
from data types to allow verification algorithms to be applied. Due to these
restrictions, a number of elements of MSCs become useless and are thus not
examined.

A major extension of both the concept of MSCs as well as the concept of
SDs has been given as Life Sequence Charts (LSC) in [4]. LSCs introduce new
concepts to combine different diagrams and additional elements. The goal is to
allow a complete specification of the system’s behaviour as well as of system
properties within the same model. Although some features of LSCs have been
integrated into MSCs and SDs, many aspects of a system can be described much
more comprehensively and precisely by using LSCs.

Although object-oriented features are not handled by our semantics, there are
solutions for expressing object-orientation by means of Petri nets (see [1, 16]).
An integration of some of these concepts into the data handling proposed in this
paper will be part of further research.

3 M-Nets – An Algebra of High Level Petri Nets

Petri nets are an easy and intuitively comprehensible visual model with a strong
mathematical foundation. Thus, Petri nets, and especially high level Petri nets,
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have been established as a commonly used model on all levels of formal software
engineering and verification (for example see [13, 17, 21, 20]).

The semantics given in this paper is based on the algebra of M-nets (multi-
valued nets). The benefits of using M-nets rely on the fact that any M-net is
constructed from very simple nets by application of a set of well defined oper-
ators. As a consequence, modelling semantics and verification of the semantic
models is comparably simple when using M-nets.

An M-net consists of a high level Petri net with the usual inscriptions gov-
erning colored token flow and additional inscriptions governing composition and
synchronization of nets.

Places are classified as entry (no incoming arcs; labeled by +), exit (no outgo-
ing arcs; labeled by −) or internal (no restrictions with respect to arcs; no addi-
tional label). The composition operators include sequential, choice, and parallel
composition and an iteration operator. For example the sequential composition
of two nets N1 and N2 consists of their juxtaposition, where all exit places of
N1 are combined with all entry places of N2 using a cross product operation.

Transitions of M-nets are inscribed with a set of (parameterized) synchronous
action labels and a set of (parameterized) asynchronous action labels. Syn-
chronous action labels are used for (CCS-like) synchronization and restriction.
The combined operation of synchronization followed by restriction is called scop-
ing (sc).

The asynchronous action labels are subject to the tie operator, which links
two transitions t1 and t2 by inserting a place between both, making occurrence
of t2 dependent on occurrence of t1.

Handling of a data variable is modeled by a data box within the algebra of
M-nets. Essentially, a data box consists of a place p containing the actual value
of the variable, and a transition t for communicating the actual value or storing
a new value. Occurrence of t is usually governed by transitions of the control
part of an M-net via synchronization with t.

The scoping and tie operations build up the correct links between data ac-
cessing transitions and data boxes and send and receive events, respectively.
The effect of applying the tie operator can be seen in fig. 1. The data access to
variables x and y would be resolved by synchronization over actions X/2 and
Y/2. This would replace a with the current value of x, thus storing a in y while
discarding the old value b of y. Since application of these operators is purely

Fig. 1. Message creation with tie
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technical, we will show throughout the paper only nets where sc is omitted and
tie has already been applied.

For the translation of complete interaction fragments (see section 4.2) the al-
gebra is extended by the new composition operator of net concatenation, defined
as follows:

Definition 1 (Net Concatenation). Let N3 = N1 ◦ N2 be the concatenation
of two M-nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2). Let −P be a subset of
the exit places of N1 and +P be a subset of the entry places of N2. The resulting
net is defined by N3 = (P3, T3, F3) with

P3 = P1 ∪ P2 \ +P

T3 = T1 ∪ T2

F3 = F1 ∪ F2 \ {(p, t) ∈ F2|p ∈ +P} ∪ {(p, t)|p ∈ −P, (h(p), t) ∈ F2}
h : −P → +P is a bijective mapping on the subsets to be connected that may

be arbitrarily chosen.

A description of M-nets theory with applications to modelling and verification
can be found in references such as [3, 5, 7].1

4 Translation

In this chapter a mapping PN : SD → M −nets of UML 2.0 sequence diagrams
to M-nets is defined. This paper does not define the semantics of time events
(which are not translated in this approach due to a time-free semantical model
used), some combined fragment types (which are not applicable due to the dif-
ferent point of view on system specification), or part decomposition. Although
part decomposition offers a number of useful features for comprehensible mod-
els, and most of these features should be translatable to Petri nets, extra global
fragments are intrinsically non-compositional, and thus not implementable in
our semantics. An extension of the proposed semantics with non-compositional
features including extra global fragments will be part of future work.

4.1 Data Types

Since the semantics given in this paper shall describe the general behaviour of
systems, we do not restrict ourselves to interactions describing exemplary exe-
cution traces. Thus, parameters given to messages are not necessarily constants,
but may refer to attributes and variables found within the scope of the examined
interaction.

Handling of data is only sketched in this proposal due to lack of space. How-
ever, the semantics for handling data types in communication parameters and

1 At http://www.p-umlaut.de/paper/mnets.pdf a brief introduction to M-nets can be
found.
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within conditions and invariants is described in such a way that it depends only
on a proper mathematical definition of the data domain to incorporate data
types other than the proposed boolean and integers.

According to the restricted data types, the syntax of conditions used in the
diagrams is defined inductively by

cond ::= b1 | b1 = b2 | x1 = x2 | ¬cond1 | cond1 ∧ cond2 (1)

where b1, b2 are variables or values of type bool, x1, x2 are integer variables or
values, and cond1, cond2 are conditions. Conditions are translated to transition
guards, which ensure that firing of a transition is only possible if the condition
is satisfied.

The behaviour of method calls in SDs is very similar to those in common
programming languages. Each actual parameter of a method defines a variable
local to the receiving instance. Such variables may be undefined and will cease to
exist after the method has returned. Return values may be stored in previously
defined variables and attributes of the caller’s scope with UML’s own shorthand
definition varname = methodname(parA, parB):RetValue. Here, the variable
varname is set to the explicitly given value RetValue, which may be a constant
or an existing variable.

Thus, parameters only define the way data access has to be scoped and the
way values have to be copied to different scopes. A semantics for this context has
already been defined in [6, 7]. The idea is to define data boxes with a predefined
scope, which handle all access to a distinct variable. While this concept does
not provide for object-oriented relations like inheritance, all necessary features,
such as instantiation and removal of variables, scoping, call by reference, and
undefined values, are covered.

4.2 Compositional Construction

The semantics of an interaction diagram is built bottom-up: composition starts
from innermost elements, and incrementally adds surrounding elements on each
level of nesting.

To define the semantics, we need to define maximal independent sets. These
sets contain partial lifelines whose elements are completely unordered with re-
spect to all other contained elements that are not part of the same lifeline. Thus,
these lifeline fragments do not need special care for sequentialization. The blocks
will be later on glued together using a special concatenation operation.

Definition 2 (Maximal Independent Set). Let L = {L1, . . . , Ln} be a set
of lifelines. An independent set of events ordered by their causal ordering on the
lifelines is a set I = {e1,1, . . . , e1,k, . . . , en,1, . . . , en,kn

} of events of the different
lifelines. The projection of I to a single lifeline leads to a set of consecutive
elements. A maximal independent set (MIS) has a combined fragment or the
diagram border both at its start and at its end.

With this definition, we can find a partition of a sequence diagram into max-
imal independent sets. This partition is unique and groups partial traces with
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only messages inside, thus separating unordered parts of the diagrams from parts
with orderings imposed by combined fragments.

We will define our Petri net semantics based on maximal independent sets.
The resulting nets are incrementally glued together with surrounding combined
fragments and other blocks until all parts are grouped into one net.

The semantics of each MIS is defined compositionally and separately for
each lifeline that is part of the set. Since we only have EventOccurences inside
an MIS, we can give the semantics of one lifeline as the sequential composition
of elementary boxes, as defined by the semantics of send and receive events
in the next section. All lifelines are put in parallel due to their independent
behaviour.

Each MIS is defined such that the first and last events either border start
or end of lifelines, or such that all events border the same combined fragment.
Thus, the semantics of a complete interaction fragment is defined by concate-
nating the different blocks with respect to causal ordering imposed by life-
lines.

Send and receive events as well as data access inside conditions, actions, and
message parameters are only handled by inscriptions of the Petri nets, using ac-
tion symbols and tie symbols of M-nets. The resulting nets have to be completed
in a last step to gain explicit representations of the Petri net semantics.

4.3 Elementary Diagram Elements

Interaction Frames. A sequence diagram is denoted by an interaction frame
as shown in fig. 2. The variables par1 to parm declared in the diagram header
are parameters receiving values while instantiating the frame. Local variables
are given as local1 to localn below the header. They are initialized by the Init
action which occurs at the beginning of an interaction frame, and are destroyed
upon Term at the end.

Fig. 2. Interaction frame

Messages are represented in the semantics just by their sending and re-
ceiving events. Concrete message representations are created by the tie oper-
ator when all such events are placed. The semantics of an interaction frame is
given by
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PN(IF ) =

(
Init;PN(Diag);Term ‖ ‖

1≤i≤m

DB(pari) ‖ ‖
1≤j≤n

DB(localj)

)

sc act(par1) . . . sc act(localn)tie ∗

Lifelines. Lifelines denote the existence of objects during system execution. A
lifeline starts with a named or anonymous object of a certain type as represented
in fig. 3 (in the example with an additional creation message). Any event of the
sequence diagram is connected to one or more lifelines. Lifelines themselves have
no explicit semantics, but are represented by their events.

Since lifelines represent objects, object attributes have to be set up at creation
time. All lifelines not generated by a creation message are initialized before the
first event of each lifeline is handled. To achieve this, an elementary box is created
with an initialization action for each attribute of the object. The data boxes for
these variables are added to the local variables of the main frame. Initialization is
only applied to the outermost interaction frame since diagrams used in reference
frames only contain already existing lifelines.

In sequence diagrams new lifelines can be created by others using a creation
message. The semantics of object creation is similar to that for lifelines starting
from the beginning. The only difference is that initialization of attributes occurs
when the creation message is received.

Destruction of a lifeline (STOP) is depicted as shown in fig. 4. When a
destruction is reached, the corresponding object is deleted. The semantics of
stop is given by an elementary box with termination actions for each attribute
of the object to destroy the contents of each data box belonging to the object.
Destruction of the object itself is implemented by an M-net stop box, which is
put in sequence with the data boxes’ termination.

Fig. 3. Object creation

Fig. 4. Object destruction
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Fig. 5. Action symbol

EventOccurrences and Actions. EventOccurrences and Actions define an
active part of the lifeline where (for example) calculations are done. Since these
activities are arbitrarily and often not exactly specified, semantics for these ele-
ments is only vague. EventOccurrences, denoted as thin rectangles covering the
part of the lifeline the activity is running, define a scope. This scope ensures the
availability of parameters instantiated by a receive event as part of the Even-
tOccurrence. Thus, local variables instantiated to hold the actual parameters
of a message will be destroyed at the end of the EventOccurrence they were
received in. EventOccurrences may be nested, such that subscopes may be de-
fined. Scopes are directly related to the sc operation of M-nets, which hides all
scoped variables. Thus, the semantics of event occurrences consists of creating
proper data boxes and applying the sc function to all events inside the scope.
The instantiation of the data boxes is described in section 4.3.

Action elements describe internal activities of one lifeline at a certain point
rather than just the duration. The action need not be specified inside the di-
agram, but may refer to an Activity Diagram or just use natural language to
describe the idea of what is happening inside. Since both alternatives are not
translated into Petri nets in this paper, these actions are represented by silent
transitions inside the Petri net, i.e. an elementary box without labels as shown
in fig. 5. We are, however, working on an Activity diagram semantics which later
on can be integrated into the semantics defined in this paper.

The only actions translated to Petri nets in the current semantics are assign-
ments. An assignment action labelled varname=expression assigns the variable
of the given name the value of the evaluated expression. Therefore, the variable
has to be accessible from the current scope and the expression has to evalu-
ate to a value of the data type of that variable. The semantics is defined as
an elementary box with appropriate action symbols and the action as guard.
For atomic actions at reception of a message, the guard is put to the receiving
transition.

Messages. There are five message types in sequence diagrams: asynchronous
messages, synchronous messages, creation messages, lost messages, and found
messages. Messages consist of different parts: the sending event of a message,
the sending process (denoted as a named arrow), and the receive event.

The sending event is represented by an elementary box with action symbols
for each local variable accessed by the message’s parameters. In addition, an
export link is added, which will create the message with its actual parameters.
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Fig. 6. Synchronous message

Thus, parameters become instantiated, such that only values and not references
are sent.

The reception is modelled vice-versa, i.e. the elementary box gets an import
link to receive the values of the message place. For parameters, local data boxes
are created and initialized by the received values. If the message carries a return
value, that value is saved to the local variable given in the assignment of the
message.

The semantics of a message before and after applying the tie operation is
shown in fig. 1. If scoping is also applied, the variables exported by the tie
operator will be instantiated with actual values from the data boxes.

Synchronous messages, as depicted in fig. 6, consist of two messages. One
message initiates the exchange, the second one is the the reply. Control flow
in the initiating lifeline is halted until the reply has arrived. Thus, no event
is allowed between the send event and its reply. Since this constraint is purely
syntactical, the semantics for messages can be applied unchanged.

A lost message is a special message without a receive event. Thus, the message
does not end on a lifeline. The idea is to have messages without an explicitly
specified receiver. The semantics is defined analogously to normal send events.
A found message is the dual of a lost message. Thus, having matching names,
a lost message may be used by a found message’s receiving event resulting in a
complete message transmission. Since tie is applied when all send and receive
events have been created, message finding is correctly implemented.

Gates are named points in an interaction frame that may be the source
or target of a message. The semantics is equivalent to that of lost and found
messages, except that messages are explicitly linked when formal and actual
gates are merged during reference replacement.

Fig. 7. Lost and found messages
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State Invariants and Continuations. State invariants are necessary condi-
tions for further progress of a lifeline. They are denoted similarly to actions but
labelled with formulae as defined in (1). They are part of only one lifeline, while
continuations cover more than one. Continuations, on the other hand, have just
a label as inscription.

State invariants check the truth value of their expression. If it is true, the
execution may continue, otherwise the lifeline gets stuck, leading finally to im-
proper termination of the interaction diagram. The semantics is defined by an
elementary box with the condition as guard and appropriate action symbols to
read all necessary variable values.

There exist two kinds of continuations, which always occur pairwise. A setting
continuation defines a new global boolean variable set to true. The name of the
variable is defined by the label of the continuation. All lifelines synchronize on
setting the newly created variable. A non-setting continuation is the dual of
a setting continuation in that the lifelines synchronize on reading the boolean
value created before by a setting continuation. Only if the value has been set
to true, may the lifelines proceed with their execution. The semantics of these
elements is defined as the generation of a new anonymous message on a globally
accessible place named such as the continuation label. This is achieved by an
elementary box similar to the one shown in fig. 8. The box exports the boolean
variable to global scope instead of checking a condition, is put in sequence with
the end of the combined fragment. Non-setting continuations are implemented
by an elementary box importing the variable (that is receiving a message) placed
in sequence at the the beginning of the combined fragment.

Fig. 8. Delimiting net for combined fragments

4.4 Combined Fragments

With Combined Fragments, high level programming constructs may be used in
sequence diagrams. Combined fragments are denoted as frames with an operator
in the left upper corner and sequence diagram elements inside. The semantics
of the diagram depends on the operator. A combined fragment may be built of
different operands: that is, separate sequence diagram fragments to which the
operator is applied.

Entering a combined fragment, as well as leaving a combined fragment, is
considered as an atomic event. In particular, entering a combined fragment has to
be done synchronously by all lifelines in the proposed semantics. The rationale for
this demand is that otherwise the change of data values might change evaluation
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of the fragment condition before all lifelines have entered it. Thus, in order to
prevent inconsistencies caused by accessing combined fragments only by a subset
of all participating lifelines there are two possibilities to interpret combined
fragments:

– Either a black box semantics is applied as done in this paper, such that
behaviour inside a combined fragment does not interfere with behaviour
outside.

– Or the condition has to be evaluated when the first lifeline’s execution enters
the fragment, and that truth value has to be stored to allow consistent
condition evaluation of following lifelines.

The two interpretations seem to respect all constraints of the standard, so the
standard might be too imprecise in this case. Both interpretations are however
implementable using Petri nets. Due to the artificial introduction of variables
and implicit side-effects of the second alternative, we prefer and present the
former.

Each combined fragment will thus be prefixed and postfixed sequentially by
a net as shown in fig. 8. If a condition is attached to the combined fragment,
this condition will be used as the guard of the transition. If more than one
operand can be chosen as the first to be executed, a number of such nets might
be combined as defined by the operator’s semantics. The postfixed transitions
do not use guards, as leaving a combined fragment is unconditional.

No semantics are given for ignore, consider, neg and assert. Mainly, these
types are not considered since they are used for a different application domain
of interaction diagrams. The semantics defined in this paper assumes that all be-
haviour is explicitly specified in the diagrams, such that the mentioned operators
do not apply.

Alternative, Optional, and Break Fragments. An alternative fragment as
given in fig. 9 may have several operands. Each operand has a condition as
defined in (1). A special condition else can be used as a shorthand for a default
operand. If a condition evaluates to true, the diagram fragment is executed and
the alternative fragment has finished. If no condition is satisfied the else operand
is processed. The semantics of an alternative fragment is defined by a choice
operation over the semantics of each operand. For the alternative fragment, each
operand net itself is prefixed and postfixed by a combined fragment delimiter
net as shown in fig. 8. Since the else condition is not usable as-is in M-nets,
this special condition has to be modelled using a negated disjunction of all other
conditions.

In an optional fragment a condition indicates whether the (one and only)
operand needs to be executed. Optional fragments are equivalent to an alterna-
tive fragment with empty else operand.

A break fragment tests a condition and, if necessary, processes the elements of
the break fragment which in turn ends the interaction diagram. If the condition
is not satisfied, the rest of the sequence diagram is executed. The semantics
is equivalent to that of an alternative fragment with the contents of the break
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fragment as one operand and all remaining elements of the diagram as else
branch.

Loop Fragments. A loop fragment is given by a combined fragment with two
integral parameters 0 ≤ minint ≤ maxint ≤ ∞ as shown in fig. 10. The diagram
in the fragment is processed at least minint times, at most maxint times, and
is optional as soon as minint is reached.

The semantics consists of an iteration part that may be executed several
times, and a skip transition to bypass the loop initially. The bypass can be used
if either the condition of the loop is not satisfied, or minint is zero such that
the loop need not be executed.

To control the number of iterations, a token on an additional place named
Counter is incremented in each execution of the loop body. Two transitions in
conflict ensure that the loop is executed at most maxint times and is optional
as soon as minint is reached. The loop body is inserted by transition refinement
of the loop transition.

Fig. 9. Alternative fragment

Fig. 10. Loop fragment
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Parallel Fragments. Concurrent execution of operands of parallel fragments
is modelled as shown in fig. 11. The semantics is given by the semantics of the
operands composed by the parallel operator, which are sequentially prefixed by
the entry transition with empty guard. Coregions are equivalent to a parallel
fragment covering just one lifeline with each event being its own operand.

Fig. 11. Parallel fragment with general ordering

General Orderings. In parallel fragments some actions in different operands
may be related, and thus need to be executed in a certain order. This is expressed
by a dashed line with an arrow in the middle between the actions, called general
ordering. The semantics is defined by interpreting the general ordering as a spe-
cial kind of message between two linked events. This message makes the ordering
explicit in that additional preconditions and postconditions are installed.

Sequencing. A strict sequencing fragment is given by a combined fragment
where a strict execution order is imposed by the position of the events across all
lifelines.

The semantics of a strict fragment is thus equivalent to a normal interaction
diagram with general ordering applied to all events that are not explicitly ordered
by messages or their lifeline. We will therefore not define a special semantics but
use some preprocessing to add the general ordering.

Operands in strict fragments do not make sense since the ordering would
delay the next operand until all events in the current operand are executed.
Thus, removing the operand intersections does not change the semantics.

A weak sequencing fragment ensures a strict order inside the operands. When
all actions in one operand for a lifeline have been processed, actions in the next
operand for that lifeline may continue. The semantics of a weak sequencing
fragment is thus defined as for strict sequencing, per operand. The different
operands are then concatenated in order to execute some events concurrently, if
no causal ordering is imposed.
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Thus, weak sequencing defines local causality inside operands of a combined
fragment, and strict sequencing defines global causality inside the combined frag-
ment. Both operators apply only to the current nesting level, i.e. an ordering is
not promoted to nested combined fragments.

Critical Sections. Some fragments of parallel executions may be executed
atomically, meaning that other events of the participating lifelines are processed
concurrently. This behaviour is captured in critical sections inside an operand
of a parallel fragment.

In order to define the semantics for a critical section, we have to establish
means to prohibit execution on parallel lifelines. This is achieved by an additional
place for each concurrent instance of a covered lifeline, that has to be checked
for an existing token each time an event of the lifeline is executed. The critical
section would then collect all such tokens on entering the fragment, thus stopping
all concurrent executions on the monitored lifelines. After the critical section is
finished, the tokens are put back and the concurrent instances of the lifelines
may continue.

Since each lifeline operates on its own “active” token, concurrency is not
limited by this semantics. However, a compositional construction would need to
introduce the activity token to every parallel operator, regardless of the presence
of a critical section. Without loss of generality and due to enhanced readability,
we introduced these concepts only at this point.

Interaction Reference. An interaction reference is given by a combined frag-
ment with a name and probably with parameters. Another sequence diagram
with that name has to be defined separately, with an identical set of lifelines.

The semantics of the reference is defined by replacing the reference with the
actual sequence diagram, and parameters and gates replaced as needed. Since
such a replacement can be done statically during compilation, no explicit Petri
net semantics is needed. On the other hand, a reuse of the replacing diagram can
be done if a procedure semantics is applied. Such a semantics has been defined
for M-nets in [6]. Using a procedure semantics would also allow recursion to take
place, while the replacement semantics (as proposed by the standard) would
require infinite replacement in such cases.

5 Conclusion and Future Work

The semantics defined in this paper covers all elements of Interaction Diagrams
of UML 2.0 with the mentioned exceptions. Although defining a semantics based
on Time Petri nets should be possible, there has to be some further research on
feasibility. The implementation of the proposed semantics has already started.
The next step after finishing that implementation will be the extension of the
proposed semantics to Activity diagrams and Interaction Overview diagrams.

We would like to thank all other members of the project group P-UMLaut,
namely Eike Best, Eike Frost, Martin Hilscher, André Kaiser, Mark Ross, Casjen
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Abstract. This paper presents the design of the open shortest path first
(OSPF) protocol for the wireless private network using the specification
and description language (SDL). Simulations are run in many scenarios
to show that our design is excellent in the aspects of both function and
performance. In addition, SDL is proven to be an efficient tool in the
development of communication software.

1 Introduction

Covering thousands of square kilometers, the wireless private network serves as
an information exchange platform to support such integrated services as voice,
video, data and so on via microwave channels. The network adopts the protocol
stack of IP over asynchronous transfer mode (ATM) and accordingly the selec-
tion of IP routing protocol becomes an important issue. In this paper we only
discuss the intra-domain routing protocols, which mainly include the route in-
formation protocol (RIP), the interior gateway routing protocol (IGRP) and the
open shortest path first (OSPF) [1, 2]. RIP and IGRP belong to distance vector
protocols, and the routing information stored in routers is dependent on each
other, which may incur route flapping when there is something wrong with a
given router. Compared with RIP and IGRP, OSPF is a link state protocol and
has such advantages as fast convergence, robustness, scalability, security and so
on. So it is selected for the wireless private network.

In the OSPF domain, all routers exchange link state information with neigh-
bors to maintain a topology graph and calculate the optimal routes. Moreover,
OSPF introduces the concept of area to decrease the traffic of protocol infor-
mation. An autonomous system (AS) is divided into many areas and each one
maintains its own link state database formed by the link state advertisements
(LSA). To describe the link information each router will originate several types of
LSAs, namely router LSA, network LSA, network summary LSA, AS boundary
router summary LSA and AS external LSA. LSA instances are transmitted by
the use of OSPF packets, including Hello packets, data description packets, link
state request packets, link state update packets and link state acknowledgment
packets. When a router starts up, it will send out Hello packets from all interfaces
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periodically to detect the neighbor routers and initiate the database synchroniza-
tion, which includes the negotiation of master/slave relation, exchange of LSA
database summary, request, update and acknowledgment of LSA instances, and
finally both LSA databases are identical. Then the routers can use the Dÿkstra
algorithm to calculate the routing tables.

Though there are many OSPF designs for public networks, they can hardly
fit the special characteristics of the wireless private network. First, the system
works in the wireless environment. As a result, the link bit error rate (BER)
is very high and the bandwidth is limited. Second, the network scale is smaller
compared with public networks. Commonly speaking, there are tens of routers in
the wireless private network. In addition, the topology changes more frequently.
Last but not least, the reusability and maintainability of OSPF software are the
top concerns for the owner of the wireless private network. According to these
characteristics, we must simplify the standard OSPF protocol to enhance the
overall performance of the wireless private network. Additionally, the selection
of the most appropriate tools to develop the software is also a vital issue. Con-
sidering the features of the specification and description language (SDL) [3, 4, 5],
we use it to design and implement the OSPF protocol for the wireless private
network. Note that SDL-based OSPF design is partly introduced in [6], but the
emphasis is put on the comparison between different LSA refreshment functions.
The design of the protocol itself is not given in detail.

2 SDL Development Issues

Using SDL to develop software can drastically improve the maintainability and
reusability of the code. The SDL hierarchy consists of four levels: system, blocks,
processes and procedures. Such a structure follows the natural functional sub-
divisions and facilitates the reusing of existing specifications. Based on type
declarations, the object-oriented concepts of SDL also give users powerful tools
for reusing. As to the working environment, we use the Telelogic Tau SDL
suite 4.3 [7] on the Windows platform. The suite is designed to simplify and
speed up the development work and users can efficiently produce SDL code that
is free of syntactic or semantic errors.

The Telelogic Tau SDL suite also provides the simulation environment to
evaluate the system in the aspects of both function and performance. Accord-
ing to our experience, SDL simulation can be run in two different modes: the
simulator user interface (UI) mode and the command prompt mode. As to the
former one, there are three methods to perform the simulations. First, we can
adopt the step-by-step concept and this is very suitable in the debugging of
system functions. Second, a simulation script file can be created to control the
system running, which is often used to send signals from outside and simulate the
bottom-layer network behavior. Last, the simulation may be run automatically.
Note that the last two methods are often used simultaneously. Additionally, the
corresponding message sequence chart (MSC) [8] can be enabled to clearly depict
the simulation process. In the prompt command mode, all simulation commands
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should be typed out manually by users. Though the simulator UI mode is conve-
nient to use, it is very time-consuming. Therefore, the command prompt mode is
more suitable for the performance simulation of large scale networks, and it can
speed up the simulation by a factor of 10 to 20. When the simulation finishes,
we will display the simulation data and write them into a log file. Then the data
may be processed and our system can be evaluated effectively.

3 Requirements Analysis of the OSPF Module

The architecture of IP routers in the wireless private network consists of the
OSPF module, signaling transmission module, data transmission module, debug
console, simple network management protocol (SNMP) [9] module and so on.
The design targets of the OSPF module can be summarized as follows:

1. The module must implement the OSPF routing protocol. The types of in-
terfaces include point-to-point, broadcast and non-broadcast multiple access
(NBMA).

2. The module will support SNMP and command-line debugging.
3. The design should adapt to the frequent change of network topology and the

bad channel conditions.
4. The protocol overhead should be as small as possible and the system config-

uration should be simplified to the maximum extent.
5. The software should be robust, reusable and maintainable.

4 General Design of the OSPF Module

We should firstly simplify the standard OSPF protocol to achieve the best per-
formance. The simplifications are mainly focused on three aspects: partitions of
areas, LSA types and formats, and OSPF packet formats.

The wireless private network typically consists of tens of routers and the
topology changes frequently, so the standard multi-area scheme proposed by
OSPF will definitely lead to low protocol efficiency. Instead, if the OSPF do-
main is regarded as a single area, the implementation complexity of the protocol
will be greatly reduced. In addition, the configuration and management of the
wireless private network can be simplified effectively. So the single-area scheme
is adopted in our design. Next we can reduce the number of LSA types accord-
ing to the single-area scheme. Note that both network summary LSA and AS
boundary router summary LSA are related to the inter-area information ex-
change, so they can be discarded in our design. In addition, because the link
BER in the wireless private network is high and the bandwidth is limited, the
LSA formats can be simplified to decrease the protocol overhead and the OSPF
packet retransmission probability under bad channel conditions. For the same
purpose we can also simplify the OSPF packet formats, especially the Hello
packets.
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Fig. 1. General design of the OSPF module

To enhance the code reusability, we design the OSPF module in an object-
oriented manner. The behavior of OSPF is specified in an SDL block type,
which can be instantiated according to the particular configuration when we
construct the network. Partitioning the processes in an SDL block must obey
the general principle that the function of each process is fairly integrated and
independent. In addition the interfaces between processes should be clear. Ac-
cording to this principle and our simplified OSPF protocol, we can present the
general design of the OSPF module for the wireless private network with SDL
as shown in fig. 1. The OSPF module is divided into six kinds of processes
that are responsible for: managing the running of the module (Control), vali-
dating the incoming OSPF packets (PrePro), implementing the neighbor state
machines for three types of interfaces (PtoP, Broadcast, NBMA), and maintain-
ing the LSA database(LSADbase). In addition, LSADbase process is designed
to calculate the optimal routes to all reachable destinations. There is only one
instance for Control, PrePro and LSADbase in the block, respectively. For sim-
plicity, PtoP, Broadcast and NBMA are called the neighbor processes in this
paper because they are all designed to implement neighbor state machines for
different types of interfaces. In our design the number of instances of the neigh-
bor processes is decided by the corresponding interface types of the given router,
and there is only one instance of the neighbor processes for each interface. Note
that Control is defined as a virtual process type to facilitate the configura-
tions for different routers. Due to the complexity of the detailed design and
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the space limitation, in the next section we will only informally describe the
behavior and structure of the OSPF module without the corresponding SDL
diagrams.

5 Detailed Design of the OSPF Module

5.1 Control Process

The Control process mainly communicates signals with debug console and SNMP
module. The function of Control process can be summarized as:

1. Initiation of the OSPF module.
2. Support of network management and command-line debugging.

Initiation of the OSPF Module
When the system starts up, only the Control process is originated automati-
cally. It will decide whether to originate the PrePro process and the LSADbase
process, based on the static configuration. Because PrePro process is mainly
responsible for validating incoming OSPF packets from all interfaces and send-
ing valid packets to the corresponding neighbor processes, it is reasonable to
originate the neighbor processes in PrePro process. The behavior related to the
particular router configuration is not described In the specification of the OSPF
block type. Instead, only a virtual state transition is given in this level. When
creating the network system, we can use the subtypes of OSPF block and rede-
fine the contents of the virtual transition. Thus the particular configurations for
different routers can be implemented conveniently.

Support of Network Management and Command-Line Debugging
SNMP module can manage and configure the OSPF module dynamically. Ac-
cording to signals received from SNMP module, the Control process will update
the entries of the management information base (MIB) and inform other pro-
cesses about the changes. Then other processes can read the new configuration
data via shared variables. The use of shared variables is an efficient complement
to the SDL signal exchange scheme, which can avoid large amounts of signal traf-
fic between different processes and enhance the system performance. The debug
console directly monitors the running of the OSPF module by a command-line
interface. For example, it can query the information of LSA databases. When
receiving such commands, the Control process will communicate with LSADbase
process and return the relevant data.

5.2 PrePro Process

The PrePro process mainly communicates signals with signaling transmission
module and the bottom-layer hardware. Its function can be summarized as:

1. Origination of the neighbor processes.
2. Preliminary processing of incoming OSPF packets.
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Origination of the Neighbor Processes
Once created, PrePro process will read the relevant configuration information
from the Control process. The information includes the list of OSPF interfaces,
router ID, Hellointerval, Deadinterval, link data of each interface and so on.
Based on this information, PrePro will originate one instance of the neighbor
processes for each router interface according to the given interface type. Addi-
tionally, the relations between SDL process IDs of the neighbor processes and
the corresponding router interfaces will be stored in an array and reported to
other processes in the module.

Preliminary Processing of Incoming OSPF Packets
Receiving the interface signals from the bottom-layer hardware, the PrePro pro-
cess should send them to the corresponding neighbor processes to trigger the
interface state transitions. In addition, the validity of incoming OSPF packets
will be examined by PrePro, which judges whether the interface is in the normal
working state and decides how to deal with the packets. If the packets pass the
validation, they are sent to the corresponding neighbor process. Otherwise the
packets will be discarded. Such a scheme can effectively reduce the complexity
of the neighbor processes.

5.3 PtoP Process

The PtoP process is created for the point-to-point interface and mainly commu-
nicates with signaling transmission module. Its function can be summarized as:

1. Implementation of the point-to-point interface state machine.
2. Implementation of the corresponding neighbor state machine.

Implementation of the Point-to-Point Interface State Machine
The OSPF protocol defines seven interface states: Down, Loopback, Point-to-
Point, Waiting, DR, Backup and DRother, among which only the former three
states are available in PtoP process. Point-to-Point is the normal working state.
Down state indicates that the corresponding interface is currently invalid, and
when entering Loopback state, the interface is regarded as a virtual one to con-
duct tests, and as a result no data can be transmitted in such a state. PtoP will
ensure the normal running of the interface state machine according to received
interface events. Note that the interface state transitions may directly trigger
the change of neighbor state.

Implementation of the Corresponding Neighbor State Machine
As to the neighbor state machine, the OSPF protocol defines such states as
Down, Init, Attempt, 2-Way, ExStart, Exchange, Loading and Full, among which
Attempt and 2-Way are not be considered in PtoP process because they relate
to broadcast and NBMA networks. The nature of the neighbor state transitions
are to control the synchronization between LSA databases in neighbor routers,
as shown in fig. 2.
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Fig. 2. Synchronization between link state databases

To maintain the adjacency between neighbors, a PtoP process must fre-
quently access the database in the LSADbase process, so the efficiency of commu-
nications between these two processes is vital to the performance of our design.
We have two schemes in the SDL environment. The first one is to use shared
variables, just as we have done for the Control process, but this scheme is not
suitable here because it may incur a data inconsistency problem when the shared
variables are updated too frequently. So we have to use the second conventional
signal exchange scheme. To effectively reduce the traffic between processes, a
PtoP process only needs to maintain the LSA indexes and summaries of those
instances in the LSA retransmission list. Other LSA instances are acquired from
LSADbase process only when there is a neighbor router requests. In a word, LSA
instances maintained by a PtoP process are only a small part of the whole data.
This scheme enhances the performance of our design significantly.

5.4 Broadcast Process and NBMA Process

Compared with the PtoP process, the tasks of the Broadcast process and NBMA
process are similar but more complex, and they are created for the broadcast in-
terface and NBMA interface, respectively. Their functions can be summarized as:

1. Implementation of the broadcast or NBMA interface state machine.
2. Implementation of the corresponding neighbor state machines.

Implementation of the Broadcast or NBMA Interface State Machine
Because there is more than one neighbor for each broadcast or NBMA inter-
face, the corresponding interface state machine is much more complex compared
with the point-to-point counterpart. The interface state machine includes six
states: Down, Loopback, Waiting, DR, Backup and DRother. Considering that
a broadcast or NBMA network consists of several routers, a designated router
(DR) should be elected to play the central part in database synchronizations.
In addition, a backup DR is also elected as a substitute. Once enabled by the
bottom-layer hardware, the given interface will enter Waiting state to elect the



156 Y. Yang, Y. Lu, and X. Lin

DR and the backup DR, after which the interface state will change to DR or
Backup if the router is the elected DR or the backup DR, respectively. Otherwise,
the new state of the interface will be DRother.

Implementation of the Corresponding Neighbor State Machines
The neighbor state machine for the broadcast or NBMA interface is very similar
to that for the point-to-point interface, but the design is more complex because
there is more than one neighbor for the given interface, which means that sev-
eral neighbor state machines should be implemented in each Broadcast process
or NBMA process. To solve the problem, we can use SDL generators to define
different arrays and store the corresponding data of each neighbor in the net-
work. The primary data type includes the current neighbor state, the different
OSPF timers, the previous sent packets, the link state request list, the link state
retransmission list, the current LSA number and so on.

5.5 LSADbase Process

The LSADbase process mainly communicates with data transmission module
and its function can be summarized as:

1. Maintenance of the LSA database.
2. Routing table calculation.

Maintenance of the LSA Database
All LSA instances are stored in an array that can be accessed by LSA indexes.
The maintenance of the LSA database includes the origination, updating, ag-
ing and flooding of LSA instances. When originating a new LSA instance, the
LSADbase process will update the database and flood the LSA instance to neigh-
bors from all interfaces. In our design, several SDL timers are defined to control
the frequency of accessing LSA database and prevent a broadcast storm in the
wireless private network. As to the aging of the database, it is a primary task
of LSADbase. The incrementing of each LSA’s age field is controlled by an SDL
timer, which expires every second. How to design the aging scheme is an impor-
tant issue. The method of age box [10] is efficient for large scale networks, yet it
is a little complex. Because the scale of the wireless private network is small and
the number of LSA instances is consequently small, we can define a SDL array
that just stores the age information of all LSA instances. The array is updated
every second to realize the aging of the LSA database. By avoiding the frequent
accessing of the database and the parsing of LSA instances, this method is very
simple and can decrease the central processor utilization.

Routing Table Calculation
According to the link state information stored in the router, LSADbase pro-
cess will use the Dÿkstra algorithm to calculate the optimal routes to reachable
destinations when a change of LSA instance is detected. The routing table calcu-
lation can be divided into three stages. First, a shortest-path tree is constructed
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by only considering those links between routers and transit networks. Second,
the stub networks are incorporated into the tree. And finally the routes to ex-
ternal destinations are calculated through the examination of AS external LSAs.
Note that in our design the routing table is stored in an array indexed by the
destinations.

6 Simulation Analysis of the OSPF Module

6.1 Simulation Model

Based on the specification of the OSPF module, we can use the object-oriented
method to perform simulations in different scenarios. According to the router ar-
chitecture, the exchanges of OSPF packets are controlled by the signaling trans-
mission module, so the OSPF blocks can’t be directly connected to construct
simulation networks. To solve the problem, we add the Rec and Send processes
to our design. Because the scale of the wireless private network is small, it is
enough to provide seven interfaces for each router in the simulation stage. The
processes and the primary signal channels are illustrated in fig. 3. These two
kinds of processes are responsible for realizing the basic functions of router in-
terfaces, including the receiving and sending of packets, interface identification
and so on. In addition, the Send process can add the transmission time delay
and random errors to the data flows to simulate the behavior of physical links.
The Telelogic Tau SDL suite provides a scheme to generate random numbers
according to different distributions such as the uniform distribution, the neg-
ative exponential distribution and the Erlang distribution, which can greatly
simplify the simulation. Because the five types of OSPF packets have different

Fig. 3. Design of the router interface
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formats, the corresponding SDL struct types are defined in the OSPF block to
conveniently describe the protocol and each OSPF packet is a struct value. Note
that all packets are transmitted in the bit string format, so conversions between
the struct values and the corresponding bit string values are necessary in Rec
process and Send process. Before packets are sent to neighbors, we can insert
errors to the bit string flows according to the given distribution.

6.2 Function Simulation

The SDL simulator UI is suitable to perform the function simulation, and enables
us to find errors more conveniently. The function simulation can be divided
into two stages. First, we build the simplest scenarios to simulate the basic
function. Second, larger networks (which simultaneously incorporate the point-
to-point, broadcast and NBMA interfaces) can be created to give us a more
comprehensive view of our design. According to characteristics of the wireless
private network, the scale of the simulation network can be enlarged to 20, 40,
60 and 80, respectively.

At the first stage simulation, the function simulations are performed in three
different scenarios as shown in fig. 4, because the module supports three different
types of interfaces. These scenarios are simple enough and have the correspond-
ing network features, so they are very suitable for the debugging of system func-
tions. We will put emphasis on such aspects as LSA database synchronization,
routing table calculation, reroute capability and election of the DR.

Because the broadcast network in fig. 4 is similar to the NBMA network
and also supports the point-to-point interface, this scenario is very typical and
as a result the corresponding simulation details are given here to demonstrate
our methodology. The simulation is divided into four stages, and the duration
of each one is 30 seconds. In the first and fourth stage we enable all interfaces
of all routers, while in the second and third one, the interface 1 of router 1
and the interface 1 of router 3 are disabled respectively. We can see that when
each simulation stage finishes, the LSA databases of all routers are synchronized
and each LSA describes the latest link states, which indicates the correctness of
LSA origination and flooding. In addition, the OSPF block can reroute quickly
according to the topology changes. It is observed that the routing tables and the
elected DRs accord with those ones in theory. Due to the space limitation, the

Fig. 4. Topologies of the first stage function simulations
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corresponding routing tables and the simulation details of larger networks are
omitted here.

6.3 Performance Simulation

To get a view of the performance of our design, here we only construct a 40-node
wireless private network and perform different simulations under bad channel
conditions. The simulation scenarios are summarized as follows and the simula-
tion results are given in fig. 5.

Fig. 5. Network performance in four scenarios

Compared with function simulations, in performance simulations the speed
is the most important factor to be considered. So we run the simulations in the
command prompt mode. Note that each scenario is simulated for 300 minutes.
The performance evaluation is focused on the average times of routing table
calculations per router and the bandwidth consumption of protocol packets. We
can see that the results vary greatly in different scenarios, among which our
design has a better performance compared with the standard protocol under the
same condition. The enhancement is mainly due to the format simplifications
of different LSAs and OSPF packets, which greatly reduce the events of syn-
chronization breaks between neighbor routers. More details of the performance
evaluation are omitted here.

7 Learned Experience

There are many benefits of using SDL to develop a large scale communication
system, and here we summarize some points that impressed us the most in
our work. First, the capability of SDL to describe systems is very strong. SDL

1. STD BER=0.007: standard OSPF protocol and BER=0.007;
2. SIM BER=0.007: simplified OSPF protocol and BER=0.007;
3. STD BER=0.006: standard OSPF protocol and BER=0.006;
4. SIM BER=0.006: simplified OSPF protocol and BER=0.006.
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provides generators for users to define almost any new data types they want.
In our work the arrays are used frequently, and it is convenient because we can
easily define different data structures which are indexed by the router ID, the IP
address, the LSA sequence number, the reachable destination and so on. It is not
that easy to accomplish this with other languages such as C/C++. Second, the
embedding of C/C++ code in SDL diagrams facilitates the specification of the
system. As to the common co-design schemes, we find that the directive #CODE
can be used efficiently, yet it is not as powerful as another directive #ADT or
the CPP2SDL tool, though these two schemes are more complex. Third, the
use of shared variables is an essential complement to the SDL signal exchange
scheme, and it is mainly used when many global values are shared by different
SDL processes. Note that the prevention of data inconsistency is an important
issue when using shared variables. Fourth, the object-oriented design makes the
structuring and reusing easier. Based on the definition and redefining of virtual
entities, we can add new transitions and specialize behavior specifications, an
approach which has been used in the generation of the desired simulation sce-
narios in our project. Last but not least, using SDL to develop the software can
ensure the code correctness and reduce the development cycle to the maximum
extent. With the simulator UI provided by Telelogic Tau SDL Suite, we can
conveniently perform simulations and debug the system functions. Note that it
took us only four months to develop such a large communication system.

Though there are many advantages of SDL-based software development, we
also encountered some problems in our work. First, the simulation speed is very
slow even in the prompt mode, especially in the large scale scenarios. Note
that an 80-node network simulation will run for nearly 10 days. Second, in the
Telelogic Tau SDL environment the simulation networks can only be constructed
manually, which is really tedious when the topologies are complex. Though this
problem is partly solved in [11], the scheme introduced is not very convenient.
So we suggest such an issue be considered in the development tools. Last, the
C code generated automatically in our project exceeds 100000 lines and maybe
the code space efficiency is a potential problem.

8 Conclusion

In this paper we present the SDL design of the OSPF protocol that fits well
characteristics for the wireless private network. Function and performance sim-
ulations are performed in many scenarios, which indicate that our design can
meet the system requirements very well. First, all required functions are imple-
mented correctly and the running of OSPF module is very stable. Second, the
design adapts to the frequent change of network topology and the bad channel
conditions. The protocol overhead is reduced greatly and the system configura-
tions are also simplified. In short, the performance of our design is better than
the standard protocol under the same condition. Last but not least, the code
is reusable and maintainable because of the formal characteristics of SDL. Ac-
cording to our experience, SDL is an appropriate choice for the development of
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communication software, especially the large scale systems. Future work will be
focused on the code migration to hardware platforms.
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Abstract. We present here an ASM view and an SDL view of the same
protocol. We show how the two different modeling paradigms comple-
ment each other and that they are similar in their underlying semantic
models. Our application example is sufficiently complex, including both
architectural as well as non-trivial algorithmic aspects, and overall ad-
dresses an interesting problem in a demanding technological sector.

1 Introduction

In this paper, we present two conceptually different views of the same network or
routing layer protocol for geographic routing in mobile ad hoc networks based on
two popular and well known modeling paradigms for distributed real-time sys-
tems, namely: the SDL view and the ASM (abstract state machine) view. The
motivation for our work is that we feel that the two different views complement
each other in various ways. The strengths of SDL clearly are the expressive
means and the methodological framework it provides for modeling behavioral
and structural aspects of a functional system architecture in terms of a hierar-
chically defined collection of interacting system components with well defined
interfaces [4]. In contrast, the ASM formalism and abstraction principles pro-
vide a precise mathematical framework for semantic modeling of complex func-
tional requirements at high levels of abstraction (such as in early system design
phases [2]). Its particular strength is the flexibility it offers for writing highly
abstract and concise specifications minimizing the need for encoding in mapping
the problem space to a formal model.

Our goal is to compare the two basically different views in modeling dis-
tributed real-time systems and to illustrate how they complement each other.
The chosen application example is sufficiently complex but well understood,
involves both fundamental architectural aspects and non-trivial algorithmic as-
pects, and addresses an interesting problem in a demanding technological sec-
tor. In [1], the network layer protocol that we consider here was modeled in a
fairly abstract way using distributed real-time ASM. For a refined version of this
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model, various properties characterizing its efficiency and fault-tolerant behavior
are proven in [5]. From the existing ASM model, we derive a refined SDL model
effectively making the transition from an abstract ASM system model to an SDL
system architecture that provides a basis for implementations of the protocol.
Since the ASM model is already well documented, the main focus in this paper
is on the comparison with the SDL architecture.

The paper is structured as follows. Section 2 gives an overview of the network
layer protocol. Section 3 compares the ASM model with the SDL model using
some samples. Section 4 concludes the paper.

2 Efficient Ad Hoc Routing

Mobile ad hoc networks are designed for wireless communication and do not
require a pre-established infrastructure as the mobile hosts also perform the
routing tasks. The high dynamics of such self-organizing networks require routing
strategies substantially different from those employed in static communication
networks. Besides space limitations for storing large routing tables at mobile
hosts, any attempt to permanently update such tables would congest the network
with administration packets very quickly.

Packet routing in ad hoc networks has received a lot of attention in recent
years. There are two common routing approaches: topology-based routing and
geographic routing [6]. Geographic routing protocols improve topology-based
ones by using information on geographic (physical) locations of the nodes in-
volved in the routing. It is assumed that each node can determine its physical
location (at any given time) via GPS or another navigation technology. Intu-
itively, the physical location of the destination node is part of the destination
address. Hence, the routing decision at a forwarding node depends on both the
locations of the destination and the neighbor nodes of the forwarding node. To
send a packet, the sender needs to know the most recent location of the desti-
nation node.

The logical topology based location service (LTLS) protocol [5] is specified
here. The network layer is divided into two separate sublayers, one for a dis-
tributed location service, and one for a position based routing (PBR) between
known locations. These two sublayers cooperatively implement the network layer
protocol of a mobile ad hoc network. The PBR relies on the existence of a Media
Access or MAC layer (often IEEE 802.11). In this paper, we only cover the LTLS.

Conceptually, the LTLS protocol forms a sublayer of the network layer. The
idea of the LTLS is that the nodes in a mobile ad hoc network are logically
connected by a specific topology. The connection is defined statically and used
to keep the amount of information to be stored small. Each node advertises
periodically its physical location to, and keeps the location information from,
its logical neighbors. When a source node s wants to find the physical location
of a destination node t, it sends a location request to a neighbor in the logical
topology. The request is then forwarded to the next logical node until the request
reaches t. On receiving the request, node t sends its location directly to s, because
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it now knows the receiving location. Forwarding a location request from a node
to its logical neighbor as well as sending the physical position of t to s is realized
by calling the position-based routing.

3 Specifying the Protocol in ASM and in SDL

The above protocol was developed by mobile ad-hoc network specialists. To for-
mally describe the protocol, it was modeled in terms of a distributed abstract
state machine (DASM). This is a high-level specification formalism allowing
algorithms to be expressed fairly abstractly and concisely. Upon finishing the
DASM specification, we realized the need for experimental validation of an exe-
cutable version. We decided to use SDL-96 based on the Cinderella tool [3] for
this purpose. The rationale for our choice is that the SDL view is closer to the
implementation view, yet it is an abstract modeling technique. Thus, we first
turned an informal specification into an abstract formal one (DASM) and then
transformed this one into a formal executable model.

The DASM model facilitates discussing formal protocol aspects with devel-
opers, whereas the SDL specification allows specific application cases to be ex-
amined.

In the following, we present a comparison of the two sample specifications
by way of selected parts of the protocol description. In order to simplify the
comparison, we have identified corresponding parts with matching names.

3.1 Layered Communication Model

In both models, nodes send and receive packets consisting of two logically sep-
arate parts: 1) a packet header, and 2) the payload carrying the actual data.
Abstractly, packets are represented as elements of a dynamic domain PACKET.
We uniformly model the payload in terms of an abstract type DATA with an ac-
cess operation data defined on packets. The information contained in a packet’s
header, however, is essential for the network layer protocol and requires special
attention. A header consists of several descriptors specifying: the sender node
sndr, the destination node dest, the next receiver node rcvr (that is, the next
hop on the way to dest), and the packet type type. Each of the descriptors in a
packet header forms a node reference consisting of the node’s address nadr and
its geographic location npos. Node references are represented by the elements of
a dynamic domain NREF.

In SDL, PACKET is a struct with fields data, sndr, dest, rcrv, type, nadr
and npos. Node references in SDL are represented by Pids.

One can distinguish three basically different packet types: a) detection pack-
ets are meaningful for the position-based routing only; b) discovery packets are
meaningful for the distributed location service only; and c) data packets (see also
fig. 1). For detection packets, we further distinguish between neighbor requests
and neighbor replies. Similarly, for discovery packets, we distinguish between lo-
cation requests and location replies. All other packets are uniformly treated as
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Fig. 1. Layered communication model

data packets. In SDL, we have defined three separate packet types that include
the corresponding upper layer packet type. The DASM specification abstracts
from this structural information on the data types.

3.2 Specifying the Structure

Within the DASM model, the mobile hosts are represented by a static domain
NODE = {n1, ..., nN} , where N is a parameter of the communication network.
Each node has a unique ID or address within a global address space. This ad-
dress is given by a static mapping address from nodes to an abstract domain
ADDRESS. A monitored unary function position, defined on nodes, assigns to
each ni, 1 ≤ i ≤ N , a coordinate position(ni) from a static domain POSITION of
physical locations on the plane provided by some location system.1 Since nodes
move, their physical locations change over time.

We model the network layer protocol by identifying the protocol entities of
the LTLS and the PBR with DASM agents. With each node we associate two
agents as identified by a unary dynamic function node defined on DASM agents.
These agents execute the program LocationService and PositionBasedRouting,
respectively. Thus, the domain AGENT is formed by the disjoint union of two
sets of agents to which we refer as LTLS agents and as PBR agents.

The DASM model describes the system in fairly abstract terms leaving many
structural aspects subject to implementations. In particular, all the distribution
and location aspects are abstract in the ASM model. In fact, the ASM model
only describes how a single agent works and leaves the communication between

1 Please note that according to the ASM common memory approach based on a glob-
ally shared state, all data is in principle visible to all agents. However, the position
information is understood to be private in the protocol and is repeated in other
agents upon receiving this information by a message. Thus, it is guaranteed that
each node keeps only the position information of its logical neighbors.
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Fig. 2. SDL System level description

the agents open. In SDL, we model the network protocol through a system
AdHocNetwork describing the mobile entities as well as the environment. In this
model, the location and distribution aspects are part of the environment agent
as shown in fig. 2.

Figure 2 shows the top-level view of the system in SDL. The mobile agents
are given as blocks (containing processes) representing autonomously operating
units that are connected to an environment (described in SDL)2. Depending
on the communication layer (transport, LTLS or PBR), the environment pro-
vides different connection facilities as given by the layered communication ar-
chitecture (such as direct transfer on the transport layer or position-dependent
sending for the PBR). The physical location system is also included in the en-
vironment.

To describe a protocol hierarchically, SDL-96 provided the concept of a block
substructure in addition to process specifications [4]3. In SDL-2000 we could
have made use of agent types with redefined parts, but we have chosen to use
block substructures because this allowed us to execute the different alternatives
without recompilation.

At the first level of the mobile agent, we just specify the transport layer. On
the next level this transport view is extended by relaying the transport signals
via the LocationService process. The next level of refinement refines the LSBlock
to include the PBR protocol in a similar way. We have defined a complete SDL
system featuring all these levels and can simulate this system on any of the layers.

Specification using SDL-96 requires all data to be encapsulated into processes
and does not allow cross-process access to data. Therefore, some data items of
the DASM specification that were globally visible have to be made local in SDL.
An example is the physical location information, that is shared between PBR

2 The SDL-96 standard does not allow block instance sets as given here, but in Cin-
derella this is allowed as a step towards SDL-2000.

3 Combined block specifications express alternative views when looking at a block from
different perspectives, such as the transport view versus the LTLS view. Structurally,
both views of a combined block specification share the same external interfaces, but
there are no other language constraints to ensure behaviour equivalence.
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and LTLS in the DASM model, but that is stored only within LTLS in the SDL
specification.

3.3 LTLS Protocol Description

We first give an outline for the main functions of the LTLS protocol.

Initialization: Each node in the network maintains a dynamic routing table
identifying its logical neighbors in terms of a set of node references given
by a function logicalNeighbors. The routing tables of all the nodes jointly
yield the logical network topology. For each logical neighbor, the address
is pre-assigned while the physical location (initially undefined) is updated
dynamically. Each node broadcasts its physical location to all other nodes
in the network by the PBR defined previously.

Position advertising: Each node periodically sends its present physical loca-
tion to its logical neighbors. Each node has a timer for each of its logical
neighbors. If a node has not received any location information from a logi-
cal neighbor when the timer expires, then the node sets the location of this
neighbor temporarily to undefined.

Location request: When a node s wants to send a location request to a node
t, s selects a path in the logical topology, sends the location request to the
logical neighbor in the selected path, and sets a request timer, denoted as
reqT imer. If s receives the location reply from t before the timer expires,
s completes the location request process; otherwise, s considers the request
as lost and selects alternative paths from s to t, retransmits the location
request via the selected paths, and sets reqT imer. Retransmissions of loca-
tion requests are counted by a sequence number, denoted as seqno. If s can
not get the location reply from t after all available paths have been tried, s
decides that t is not reachable (see [5] for details).

Location reply: On receiving a location request from s, node t replies by send-
ing its physical location directly to s using the PBR protocol.

Recover from failure: When a node recovers from failure, it broadcasts its
present location to all nodes in the network.

We now model the LTLS protocol formally in terms of a DASM. With every
node u in the network the logical topology associates a non-empty set of logical
neighbors of u as identified by a static function logicalNeighbors(u). The set
of logical neighbors of u is statically defined in terms of node references. If a
neighbor of u is unreachable, the related node reference in logicalNeighbors(u)
is invalidated by resetting its position information to undefined. Initially and
after each recovery, the location information for the logical neighbors may be
undefined or invalid.

logicalNeighbors : NODE → NREF-set
In SDL, we use an array of PIdstrings (NREF-set) indexed by Pids (nodes).

dcl logicalNeighbors PIdStringArray;
newtype PIdString String (PId,’’) endnewtype;
newtype PIdStringArray Array(PId,PIdString); endnewtype;
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The request timer in DASM is a function returning a time value, and the sequence
number yields a value from a domain SEQNO.

reqT imer : LTLS×ADDRESS → TIME, seqno : LTLS×ADDRESS → SEQNO

The request timer is of course modeled as an SDL timer. This way, we do not
need the LTLS parameter of the reqT imer function because this information is
implicit in that the timer is local to a process. Moreover, the sequence number
is given as a variable in the process, effectively avoiding to store it as a com-
plete function. In fact, as the sequence number is used only in handling resend
operations, it is simply stored within the corresponding reqT imer.

timer reqTimer(PId, Integer):= delta_req;

3.4 LTLS Protocol Dynamics

The below DASM program LocationService defines the behavior of LTLS agents
in several steps, where self refers to an LTLS agent executing this program.
Complex operations are subject to stepwise refinements and thus have the form
of subrules expressed by means of parameterized rule macros.4 Communication
between the LTLS layer and the transport layer, respectively the PBR layer, is
modeled by packet receive events of the form OnPacketFromLayer(Agent)

LocationService ≡
let node = node(self ) in

if devicestatus(node) = on then
BroadcastLocationInformation(node)
CheckLocationUpdates(node)
forall a ∈ {x ∈ ADDRESS | reqTimer(self, x) ≤ now(self )}
// handle location request timeouts

if seqno(self, a) < maxTry(node) then
GenerateLocationRequest(node, a, seqno(self, a) + 1)
seqno(self, a) := seqno(self, a) + 1
reqTimer(self, a) := now(self ) + δreqT imer

// set location request timer
else // node is unreachable

NotifyTransport(a,”unreachable”)
// notification of failure to transport layer

reqTimer(self, a) := ∞// reset location request timer
OnPacketFromTransport(node)
OnPacketFromPBR(node)

On the top level, the LocationService only describes the handling of the reqT imer.
In SDL, the LocationService is represented by the main body of the LTLS pro-
cess, including the reqT imer handling and all the other events that are handled

4 Note that the various subrules of a complex ASM rule are executed in parallel
rather than sequentially since a sequence of ASM rules logically defines a parallel
composition of rules forming one single rule.
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Fig. 3. Handling of the request timer in SDL

in the various subrules of the DASM description. The corresponding SDL rep-
resentation is given in fig. 3. Please note that the part of communication back
to the transport is not given here because it is not formally shown in the ASM.

3.5 Broadcast Location Information

For any node u, BroadcastLocationInformation(u) periodically broadcasts the
current position of u as controlled by a location update timer locT imer. Ad-
ditionally, it broadcasts its position whenever u is activated (initially or after
failure recovery). In the rule definition below, SwitchedOnEvent(u) holds if
node u has been (re-)activated in the current state. For brevity, packet header
initialization is specified by a subrule referred to as INITPACKET.

BroadcastLocationInformation(node : NODE) ≡
if SwitchedOnEvent(node) or locT imer(self ) ≤ now(self ) then

locT imer(self ) := now(self ) + δlocT imer // set location timer
forall nref ∈ logicalNeighbors(node)

extend PACKET with p // generate location packet
InitPacket(p, location)
if SwitchedOnEvent(node) then

// location information for neighbors is invalid
nadr(dest(p)) := broadcast

else // location information for neighbors is valid
dest(p) := nref

Packet to PBR(p)
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DeviceStatus_On

InfoLS( (. (. 'location info', nref .), recPos, myPos,
if  state='DeviceStatus_Off' then locBroadcast else location f i,

self, nref .) ) via ls_dow n

npos:= (. noPos .)

dcl idx Integer;
dcl nref PId;
dcl recPos Position;

nref:= myNeighbors(idx),
recPos:= npos(nref)

idx < length(myNeighbors)

idx:=idx+1

idx:=0

set(locTimer)

locTimer

none

DeviceStatus_Off

DeviceStatus_On

4(7)Process Type LocationServiceT

true
false

Fig. 4. BroadcastLocationInformation handling in SDL

Location requests require a retransmission mechanism that chooses alternate
paths when a timeout occurs. A dynamic function pathselect computes a subset
of the node references of the logical neighbors of u depending on the address of u,
the address of the destination v, and the sequence number i of the retransmission
attempt. Basically, an increasing number of redundant requests will be generated
to compensate node failures in a network with reduced connectivity until all
paths have been explored.

The DASM specification of BroadcastLocationInformation amounts to the
handling of alternative input signals in terms of SDL.

For the broadcast of the location information shown in fig. 4, we have chosen
to represent the switching-on event with a spontaneous transition from the ’Off’-
state to the ’On’-state as we do not handle explicitly which events reactivate a
node. The actual handling is very similar to the one in the ASM description.
Please note that the cycle handling of DASM is far simpler than the SDL han-
dling because in SDL the cycle has to be implemented directly as opposed to
the DASM ’forall’-mechanism. Please do also note that in SDL the creation of
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the signal is easily described as a creation of the corresponding data structure,
whereas the ASM model uses a separate function to fill in the data. This is due
to the fact that in SDL one has a complete description of the data contained
in the signals, whereas in ASM the data items are attached to packets using
functions. This way the data can be extended incrementally.

3.6 Handling Location Requests

When receiving a location request, the LTLS first checks the address of the fi-
nal destination which is encoded into the data part of the discovery packet. In
response to a location request, a location reply returns the most recent position
of the destination node. Forwarded location requests are not subject to retrans-
missions performed by intermediate nodes; only the requesting node initiates
retransmissions on failure.

HandleLocationRequest(node : NODE, p : PACKET) ≡
if address(node) = data(p) then // return node position

GenerateLocationReply(node, sndr(p))
else // compute next logical hop and forward packet

let {nref } = pathselect(address(node), data(p), 0) in
dest(p) := nref
Packet to PBR(p)

As this is a second level subrule in the DASM description, it is captured as a
procedure in the SDL description. Since the descriptions in ASM and SDL are
very similar here, there is no need to consider such rules further. Please find the
SDL description for HandleLocationRequest in fig. 5.

dcl nref PId;

InfoLS(lsinfo) via ls_dow n

nref:= (call pathSelect(lsinfo!cont!rcrv,0))(1),
lsinfo!dest:=  nref

GenerateLocationReply
(lsinfo!sndr, lsinfo!sndrPos )

lsinfo!cont!rcrv = self

1(1)Procedure HandleLocationRequest

true
false

Fig. 5. Handling of location request in SDL
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Please note that the assignment for nref has to be a selection in SDL, whereas
this is done abstractly in DASM.

The above definition of retransmission led to problems in the simulation,
because it is not checked if the request has already been sent by the same
node, such that the request is sent in a cycle between some nodes without
reaching the final destination. In practice, the protocol has to take this into
account.

3.7 Handling PBR Packets

The communication with the PBR layer is modeled by the rule defined below.

OnPacketFromPBR(node : NODE) ≡
if Packet from PBR(p : PACKET) then

if type(p) = locreq then
HandleLocationRequest(node, p)

if type(p) = location then
HandleLocationReply(node, sndr(p))

if type(p) = data then
Packet to Transport(p)

In SDL, the handling of packets coming from PBR is given as signal inputs
as shown in fig. 6. The SDL signal input gives a clear indication of what is
happening compared with the rather blurred description in ASM.

HandleLocationReply
(lsinfo!sndr, lsinfo!sndrPos)

HandleLocationRequest

DeviceStatus_On

Info(lsinfo!cont)
via ls_up

lsinfo!kind

InfoLS(lsinfo)

DeviceStatus_On

7(7)Process Type LocationServiceT

data
locReq

location

Fig. 6. Handling of packets from PBR in SDL
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4 Concluding Remarks

Starting from an ASM model of the network layer protocol for geographic routing
in mobile ad hoc networks, we have devised an executable SDL model; this also
reveals a better understanding of the architecture. It seems natural that we have
identified a few problems and errors in the ASM model, becoming visible due
to the better structure modeling capabilities of SDL and the executability of
the model. A typical example is the location of the positioning device: while the
ASM model can access it from everywhere, the SDL model requires placing it
in a definite location. Another typical problem is the communication between
transport and LTLS layers, which was not specified in the ASM model. We also
found a problem in the execution model: the broadcast and location requests
have to be protected against transmission cycles.

In comparison with ASMs, the following features of SDL proved to be partic-
ularly beneficial: built-in timer mechanism, built-in communication via signals,
explicit specification of the system structure, locality of variables, explicitly de-
fined content of signals. On the other hand, SDL has problems where ASMs have
advantages: abstract specification of variable types, abstract cross-layer connec-
tion, conciseness of representation with minimal encryption, easy handling of
collections of items (forall).

Both modeling paradigms allow specification of the algorithm on a fairly
abstract level and to perform analyses on it. Due to the high level of abstraction
and the use of tools, they both produce flexible and easy to change models.
Overall, none of the two paradigms is superior over or can replace the other
one; rather they complement each other so that one can actually expect real
benefits from a combined use. Therefore, it would be most desirable to have a
methodological framework providing guidance for an effective combination. This
is subject of our future work.
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Abstract. Soft state signaling protocols install and maintain states in
network nodes, expiring without receiving refreshes. These states require
proper reparation when the flow path changes, especially in case of link or
node failures. As the specifications usually do not describe in detail how
to handle these failures, we present insights by developing SDL models
for RSVP on this issue.

1 Introduction

For the last decade, a group of protocols have been designed using soft state
for state maintenance. In contrast to hard state, a soft state itself expires if no
periodical refreshes are received. Soft state protocols are expected to have less
protocol complexity in state maintenance operations especially with extreme
network situations. However, as far as we know, rigorous investigations have
rarely been performed on modeling these behaviors, especially for multi-hop soft
state signaling protocols such as the Resource Reservation Protocol (RSVP) [1].
RSVP was the first soft state signaling protocol for Quality of Service (QoS)
resource reservation developed by the Internet Engineering Task Force (IETF).
RSVP specifications provide necessary message formats and processing rules for
establishing and maintaining a state along a flow path. However, in common
with most of the follow-up soft state signaling protocols, the RSVP specification
does not describe in detail how a link failure is detected and circumvented.

This paper presents a formal model based on the Specification and Descrip-
tion Language (SDL) [7] of soft state signaling protocols. We investigate the
RSVP protocol as a case study and particularly with respect to route changes.
The model is built on a simplified IP layer model for RSVP message routing.
Different from existing modeling approaches, our model allows an easy change
of the analyzed network scenario without the need of any re-specification of the
SDL router blocks. There is no centralized entity that responsible for routing,
avoiding the necessity of re-specification for any new network topology. We show
how the RSVP state recovery is verified and validated. We believe this modeling
approach will be useful for the validation, modeling, and analysis of soft state
protocols in general.
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The remainder of this paper is organized as follows: in the following subsec-
tions, we summarize existing studies on soft state protocols, and give a short
introduction to RSVP and the formal process. In section 2, we describe the
network layer model used for IP routing and route re-establishment in case of
link failures. In section 3, we show the formal analysis of the RSVP soft state
maintenance in the normal case and in the case of link failures. In section 4,
we discuss formal description techniques versus textual description used by the
IETF. We outline where ambiguities arise through unclear descriptions in the
RSVP standard. Finally, we discuss the conclusions and give an outlook of the
further work for formal modeling soft state protocols in SDL.

1.1 Studies on Soft State Protocols

System designers argue soft state is “better” than hard state, and using soft
state the handling of network condition changes is “easy” [9, 10]. However, these
claims have been more based on intuitive, high-level thoughts and explanations,
instead of formal, exhaustive modeling and analysis. In contrast to the original
expectations, soft state protocols developed so far are still far from being simple,
especially when coupled with channel reliability, multicast sessions or traffic
control models. Soft state protocols developed so far can be categorized into two
types: end-to-end protocols and hop-by-hop protocols.

The former only involves certain types of state in an end-to-end way, without
bothering any other nodes in between; examples of this type include RTCP and
SIP. On the other hand, hop-by-hop protocols (such as RSVP and NSIS [12])
involve state in one or more router(s) in between, in addition to state in the
communicating ends. The latter is more representative and more comprehen-
sively demonstrates the soft state operations, so we choose this as the example
for general discussions of soft state. Given the particular importance of soft state
protocols, there have recently been a few efforts on their modeling and analysis:
Raman and McCanne [10] presented a model for the soft state notion based on
Jackson queuing networks, and a performance study of hard state and soft state
signaling protocols was performed by Ji et al. [8]. However, more detailed for-
mal modeling and validation is still missing. A general formal soft state protocol
analysis has been presented in [6] but a concrete analysis of an existing soft state
protocol is missing as well.

1.2 Overview of RSVP

RSVP aims to provide end-to-end quality of service (QoS) signaling for applica-
tion data streams. Hosts use RSVP to request a specific QoS from the network
for a particular application flows. Routers use RSVP to deliver QoS requests to
all routers along the data path. RSVP can also maintain and refresh states for a
requested QoS application flow. RSVP carries QoS signaling messages through
the network, visiting each node along the data path. If the reservation succeeds,
the RSVP module sets parameters in a packet classifier and packet scheduler to
obtain the desired QoS. The design of RSVP distinguished itself in a number
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of fundamental ways, particularly: soft state management, two-pass signaling
message exchanges, receiver-based resource reservation and separation of QoS
signaling from routing [11]. Because the flow of delivery paths might change
during the life of an application flow, RSVP takes a soft state approach in its
design, creating and removing the protocol states (Path and Resv states) in
routers and hosts. RSVP sends periodic refresh messages (Path and Resv) to
maintain its states and to recover from occasional message loss. In the absence
of refresh messages, the RSVP states automatically time out and are deleted.
RSVP is not a routing protocol, but rather is designed to interoperate with cur-
rent and future unicast and multicast routing protocols. While routing protocols
are responsible for choosing the routes to use to forward packets, RSVP consults
local routing tables to obtain routes and is responsible only for reservation setup
along a data path.

1.3 Introducing Formal Process into the IETF Protocol
Development

Traditionally, IETF protocols in the Request for Comments (RFC) documents
are specified in a textual, informal format. A formal description using SDL of
such a protocol can help to clearly and unambiguously specify the functional op-
eration, because it allows easier detection of protocol anomalies or design errors
such as deadlock or livelock situations. Previous studies such as [2, 4, 5] presented
analysis and validation of several IETF protocols using formal description tech-
niques. However, their analyses were limited to a single or only very few fixed
use cases and applied only to protocols operating in an end-to-end fashion or
using hard state in principle. None of them investigated any soft state signaling
protocol, nor considered randomly chosen link failures. We argue it is important
to guarantee the proper protocol operations in dynamic environments, especially
that soft state signaling protocols are error-free and also precisely presented for

Fig. 1. The formal process. After the interpretation of an RFC, the SDL models are
specified and a network scenario is created. An integrated SDL development tool,
Telelogic Tau 4.6, is used for the formal verification and validation of the created
model
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the correctness of implementations. In this paper, we show a modeling approach
that proves that despite the interactions between the possibly dynamic chain
of intermediate hops and random link failures, the correctness and robustness
in soft state protocols can still be proven by way of formal description and
validation.

Figure 1 shows the formal process flow which we used in our modeling, start-
ing with reading and interpreting the RFC. RSVP features which do not relate
to route change detection and recovery were chosen to be omitted to reduce
complexity. A network topology was created which is assumed to be sufficiently
complex to show the route re-establishment functionality of RSVP. Due to the
decentralized IP network layer architecture, additional network topologies can
be created and analyzed without the need to re-specify the SDL models.

2 SDL Modeling of Message Routing in IP Networks

To the best of our knowledge, formal models focused on IP based networks de-
veloped so far either model end-to-end protocols (which are formally specified
for their special purpose), or simply three entities are assumed: a sender, a recip-
ient, and a general transport block as a centralized entity for routing, forwarding
and packet loss modeling (see [2, 4, 5]). These approaches have the disadvantage
that for each new network topology the central routing entity or intermediate
nodes have to be re-specified and adapted to the new network configuration.
Additionally, link failures are hard to emulate. Multi-hop protocols with route
failures cannot be modeled using a centralized entity or fixed formalized nodes
for message transport.

We propose a formal decentralized network layer architecture, which auto-
matically learns its neighboring entities and reachable destinations by itself.
However, modeling of IP based communication protocols in dynamic network
topologies can suffers from some SDL shortcomings and limitations of Telelogic
Tau. SDL does not offer a dynamic number of channels connected to a block,
therefore, our router models have a fixed amount of three channels (network
links) available. Furthermore, SDL does not provide native support of IP ad-
dresses, so we use SDL process IDs (Pid) for addressing of nodes in the topology
instead. We believe that this is no drawback of our model if small network
topologies without the need for special routing are required. The signal myPID
is used to announce the destination node’s address (process IDs) to other nodes.
In reality, this is defined by the user or user’s application.

Our routing algorithm is inspired by Distance Vector Routing protocols like
the Routing Information Protocol (RIP) [3]. To reduce complexity, the period-
ically broadcasted distance vector updates are replaced by signals that trigger
distance vector updates between neighboring routers. This feature is especially
useful in not being confused by minor relevant network layer messages if the
upper layer’s soft state protocol messages are to be analyzed and validated. Fur-
thermore, this is required for formal analysis using the Telelogic Tau Validator.
The Validator does not include signals from the environment if any transitions
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are still scheduled. While the routing tables are updating, the system converges
to a stable state. Some more enhancements and simplification have been under-
taken to bypass known Distance Vector Routing problems (such as the count-
to-infinity problem [13]). We do not discuss them here in detail, since this is not
the scope of this paper. Note that our model of RSVP is intentionally not bound
to any specific IP routing protocol, so the use of a modified routing protocol
here does not violate any RSVP requirement.

The IP routing layer is modeled as a block consisting of a forwarding and
a routing block. The basic operational principle is the following: The forwarder
receives datagrams, which is an SDL structure consisting of the variables Source
(sender of this packet), Destination (destination for this packet), Phop (previous
hop), and a payload msg from the upper layer – RSVP messages in this case. If
the forwarder receives a datagram, it queries the routing block for the address
of the next hop and forwards the datagram to this hop. Routing table updates

Fig. 2. The network scenario model generated in Telelogic Tau 4.6. The message flow
used in this scenario is from NI down to NR via several NFs and vice versa. Note that
the shortest route between NI and NR is via NF1, NF5, and NF3. After a possible
shutdown of NF5, an alternative route is established via NF1, NF2, NF4, and NF3
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Fig. 3. The internal network structure block of all NF nodes. The NF block consists
of a layered block structure which is the IP layer with routing functionality and a
higher layer which is the RSVP daemon here. The forwarding block is responsible for
the receiving and forwarding datagrams. The routing block selects the next hop for a
received datagram and maintains its local routing table. RSVP messages are sent to
the RSVP daemon block by the routing block if received
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are received by a special signal DistanceVector containing the routing table of
the neighbor’s routing layer. This information is used by the routing block to
update its local routing table.

Figure 2 shows the SDL system for the described network topology. The in-
vestigated scenario consists of one NI (network initiator), multiple NF s (network
forwarder with routing functionality) and one NR (network receiver). The NI is
the entity, which generates RSVP messages and tries to establish a reservation
state along the path from NI via multiple NFs down to the receiving NR. Every
single hop on the path establishes a requested RSVP state. All NF nodes have
three connectors available for creating a network scenario. Unconnected signal
channels have to be connected to dump blocks that silently consume all signals
they receive.

All routing layers feature an external Shutdown signal from the environment,
which allows the user to shutdown any or multiple instances freely. If a routing
layer is triggered by such a Shutdown signal, it announces shutdown by sending a
LinkFailure signal to all its neighbors. Note that this is one modification to Dis-
tance Vector routing protocols, which detect a node failure by the absence of the
failed node’s routing table updates. Because periodic routing table update mes-
sages add avoidable communication complexity to the scenario, the LinkFailure
signal has been introduced.

All neighboring hops are now trying to update their routing tables with new
routing information and request table updates from their neighbors as well. The
routing layer, once being shutdown, is no longer operational from now on and
only consumes each signal or message silently which it receives. The whole entity
cannot operate any more. This allows the analysis if the soft state timing is able
to maintain its state even if refresh messages are lost at the non-operational hop
until the new route is established. See fig. 3 for an overview of the IP routing
and RSVP block.

3 Formal Analysis of RSVP State Maintenance with
Link Failure

We analyzed with our models and Telelogic Tau how RSVP can restore a valid
path after a link failure. When the simulation was started, the system announces
via a special signal that it is ready for operation and all routing tables are
built up to allow a complete routing between all nodes. The NI accepts three
different signal triggers from the environment: RSVPStart, RSVPTeardown, and
RSVPStop. RSVPStart begins creating a path state and resource reservation
along the path down to the NR. The NI periodically sends new path messages
to keep the RSVP soft state alive. The RSVPTeardown signal triggers the NI
to stop sending refresh messages and to send a PathTeardown message towards
the NR. All nodes in-between delete the associated states from this reservation
and forward the teardown message to the next hop (Explicit Teardown). The
RSVPStop signal just stops the NI from sending new state refresh messages
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Fig. 4. Message flow of a RSVP resource reservation. The Path message is sent down-
stream from the NI hop-by-hop to the NR. The corresponding Resv message is sent
upstream from the NR hop-by-hop to the NI. Message parameters and process states
are not shown for clarity

towards the NR. This leads to a state timeout at all hops and the states are
deleted after the state lifetime expiry.

In fig. 4 a default RSVP Path and Resv message refresh flow is shown. The
message exchange in this MSC is shown from the NI via N1, N5, and N3 down to
the NR. This is the shortest path. Notice the internal message exchange between
the IP Layer and the RSVP instances. The RSVP daemon is notified of the recep-
tion of RSVP messages by the RSVP Rx signal and itself sends a RSVP message
using the RSVP Tx or RSVP TxForce signal. While the RSVP Tx signal allows
the IP layer to select the next hop, the RSVP TxForce explicitly addresses the
next hop. The Telelogic Tau SDL simulator is being used to trace the correct
establishment of RSVP Established states in all RSVP intermediate hops and
the NR.

Next, a router shutdown is triggered. In this scenario, NF5 is selected as
the failure hop. By doing this, an alternative route has to be established by
the IP routing layer. After NF5 has been shutdown, it announces its imminent
death by sending a LinkFailure signal to all its neighbors. Because of this signal,
they try to update their local routing tables with their neighbors as well. See
the following fig. 5 for an MSC which shows the message exchange in case of
the NF5 shutdown. While the routers try to update their information, a newly
created RSVP message is lost while being routed, visible at the signal marked
with the dotted arrow.
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Fig. 5. Initial message exchange after router shutdown. After the router is shutdown
by a RouterShutdown signal (top left in the MSC) all neighboring routers try to update
their local routing tables. Note that the Resv message which was already on the way
up to the NI is discarded by the link failure and is lost (marked by a dotted arrow)

Fig. 6. New route and state establishment. This MSC is the time continuation of the
MSC shown in fig. 5. Some routing table update messages and inactive instances are
skipped. The RSVP message (Path) is delivered via the alternative route NF1, NF2,
NF4, NF3 down to the NR. This is accomplished using normal path state recovery
initiated by the next refresh message from the NI

Most of the messages shown in fig. 5 are routing table updates used for the
establishment of the new path between NI and NR. So we do not discuss them
in detail here. The next RSVP refresh message is due shortly after the new
route has been established and is shown in the following fig. 6. One can see
that the message is correctly routed through the new hops of the alternative
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Fig. 7. A cut-out of the new route establishment using Local repair. This MSC is an-
other time continuation of the MSC shown in fig. 5. Some routing table update messages
and inactive instances are skipped. The new RSVP message (Path) is delivered via the
alternative route NF1, NF2, NF4, NF3 down to the NR. Note that a Path message is
sent triggered by the routing table update by receiving the DistanceVector signal. The
RSVP process gets notified of the route change by the RSVP NextHop signal

route. The SDL simulator confirms that all new hops are able to establish a
correct RSVP Established state. The RSVP soft state operation continues with
correct behavior. This is caused by the detection of the route change if the
previous hop of the new RSVP message differs from the one which has been
recorded on previous RSVP messages. The same detection applies on changes of
the next hop which is decided by the IP routing layer. This operation has been
validated using the built-in Validator of Telelogic Tau using exhaustive state
space exploration.

Note that our RSVP model does not include RSVP features like multicast,
and the admission and policy modules, since these are not particularly interesting
for route re-establishment. RSVP multicast adds a high level of complexity to
the protocol design and multicast support (actually one of its succeeding IETF
efforts, NSIS, has decided to remove multicast from basic signaling support), thus
it is not considered here. Therefore, all multicast related operations like merging
and styles processing are not considered. Local repair has been implemented,
which improves route recovery by immediately sending Path and Resv messages
towards the previous and next hop if a route change is detected. Figure 7 shows
an MSC with local repair action triggered by routing table updates.
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4 Formal Description Techniques Versus Textual
Description

The RSVP standard is not very clear in its route change detection specification
and handling. The Local Repair section of the RSVP document describes how
route changes are detected by evaluating the previous hop field and being in-
formed by the routing layer of the outgoing interface selection. Unfortunately, a
precise formalism of how route changes are detected and handled is not present.

As an example, it is stated in the Local Repair section of the RSVP specifica-
tion: “[. . . ] To provide fast adaptation to routing changes without the overhead of
short refresh periods, the local routing protocol module can notify the RSVP pro-
cess of route changes for particular destinations. The RSVP process should use
this information to trigger a quick refresh of state for these destinations, using
the new route. When routing detects a change of the set of outgoing interfaces
for destination G, RSVP should update the path state, wait for a short period
W, and then send Path refreshes for all sessions. [. . . ] When a Path message
arrives with a Previous Hop address that differs from the one stored in the path
state, RSVP should send immediate Resv refreshes to that PHOP.”

From this description it is unclear for the reader whether the routing layer
is responsible for the route change detection (and just notifies to the RSVP
process) or the RSVP process has to query the routing module for each RSVP
packet transmission. Additionally, the description about the case of previous hop
detection does not explicitly state how RSVP handles this case. That is, detailed
interactions are missing in the specification. How does the routing protocol know
that there is a routing change? Does it save the next hop node for all outgoing
RSVP messages and processes or does it notify the RSVP process of the outgoing
interface or next hop which was taken for the most recent RSVP message and
it is up to the RSVP process to detect that the next hop has changed? When
does an action have to be taken? The same thing applies for the previous hop
detection.

Besides, how the RSVP process is able to instruct the routing layer to send
a message hop-by-hop using the previous hop is not specified. The RSVP spec-
ification gives information saying in the RSVP messages section: “[. . . ] These
Path messages store ‘path state’ in each node along the way. This path state
includes at least the unicast IP address of the previous hop node, which is used
to route the Resv messages hop-by-hop in the reverse direction. [. . . ]”. We have
to make the assumption that RSVP looks up the previous hop information in
the path state according to a matching between the flow identifier (however, this
can be some other metric) and the path state, and then sets the IP header of the
Resv message as the previous hop’s IP address. However, due to the ambiguity
of the specification, even ignoring the looking up metric, one can also interpret
the Resv message to be encapsulated with a routing header where destination
addresses are the flow sender’s address (inner IP header destination field) and
previous hop’s IP address (direct IP header destination field). We have developed
a concrete communication model which allows the RSVP process to explicitly
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specify the outgoing hop. See fig. 3 for an overview of this model. Our commu-
nication model allows the RSVP process to receive the RSVP message received
by a previous hop, and to transmit a message implicitly by specifying the desti-
nation but the next hop decision is up to the routing layer. The RSVP process
is able to get a notification of the next hop address which has been selected by
the routing layer when routing table updates have occurred. Additionally, the
RSVP process is able to explicitly specify the next hop which is required to send
RESV messages upstream on the same path.

We have shown a precise, formalized way how the RSVP process can detect
and handle such extreme situations. We modeled the previous hop and next hop
change detection in the RSVP process so that there is a clearly defined interac-
tion needed between the RSVP process and the routing layer. The RSVP process
gets a notification of the next hop address via the RSVP Nexthop signal shown
in fig. 3 chosen by the routing layer. It can compare this with the stored next
hop address from previous RSVP messages. The RSVP process detects previous
hop changes by evaluating the previous hop field in the RSVP message. The
RSVP Nexthop signal may be send asynchronously, which means that the signal
can be transmitted at any time from the routing layer to the RSVP process.

In our model and particularly with this investigated scenario, this approach
was able to build up the reservation state in the alternative route and to maintain
the state in hops which were already involved in the prior resource reservation.

5 Conclusions and Future Work

It is often argued that soft state protocols are “better” but these claims have been
more based on intuitive, high-level thoughts and explanations, instead of formal,
exhaustive modeling and analysis. This calls for a detailed formal modeling and
validation. A general formal soft state protocol analysis has recently been done
but a concrete analysis of an existing soft state protocol is still missing.

In this paper, we presented an SDL model of a concrete, existing soft state
protocol, namely the RSVP resource reservation protocol developed by the IETF.
Because this protocol relies on IP routing, an IP routing layer was also imple-
mented in SDL which performs the message routing. We focused on the modeling
of a typical soft state operation caused by a link failure and the RSVP route
re-establishment through an alternative route. The studied scenarios consisted
of one initiator, one responder and a dynamic amount of intermediate nodes.
In this paper, we only considered one single scenario where the shortest route
between the initiator and responder is broken by a link failure and an alternative
route is established. We showed the message exchange in normal operation, with
local repair and the route and state recovery after a link failure has occurred in
MSC diagrams. RSVP operations especially under route change situations were
simulated and validated using the tool Telelogic Tau 4.6.

The RSVP standard lacks a detailed and formalized description of how route
changes are detected and handled. Although a description can be found about
this in the RFC document, it is unclear which process is responsible and how it
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is achieved in detail. Our model proposes a way to detect a route change and
handling within the RSVP process. We have shown that a formal description and
analysis of an existing soft state protocol and its state maintenance operations
under various network conditions is possible using formal description techniques.

The RSVP model used in this paper was simplified. Some features of RSVP
were left out: multicast support, detailed presentations for reservation flows and
sessions, admission control and policy control. Though most of these RSVP fea-
tures are not relevant for this operation and link failure analysis, the actual flow
and session presentations, and admission control are important towards a more
realistic modeling of RSVP. These features are not irrelevant in route change
modeling because some new reservations may be rejected on alternative paths
which we did not consider here. In future versions of this model, we want to
integrate these modules into our SDL model of RSVP. Additionally, we want
to analyze multiple sessions between multiple initiators and responders. Cur-
rently, we support multiple intermediate hops but only with a single initiator
and responder, which create a resource reservation along the path hop-by-hop.
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Abstract. We have used SDL to support the design and implementation
of SLACP, a novel logical link layer protocol to enhance the performance
of TCP over wireless WAN links. The protocol was modeled in SDL and
successive refinements of its design were carried out based on feedback
obtained from using the validation facilities of Telelogic Tau 4.4 SDT.

1 Introduction

Transmission Control Protocol (TCP) [1] is the dominant transport protocol in
the Internet. TCP performs well in wired networks where packet losses occur
mainly due to congestion. Unfortunately TCP performance suffers in wireless
networks where packet losses due to link errors and handoff are predominant [2].
We have designed a link-aware protocol called Satellite Link Aware Communi-
cation Protocol (SLACP) to improve TCP performance over wireless WAN links
such as satellite links1.

We use SDL [3] to support the design and implementation of SLACP based
on a validation-oriented design approach. In this approach an initial abstract
executable model that covers the basic functionality of the protocol is devel-
oped. In the abstract model the number of data elements (both in signals and
in processes) is kept to a minimum. We then validate the internal consistency
and functionality of the abstract model. Subsequently we add details to the basic
model in an incremental manner by specifying additional elements such as signal
parameters, error handling and validate the enhanced model. This step is iter-
ated until all the elements of the protocol have been added to the model. This
incremental design approach helps in controlling the complexity of the protocol
and in evolving a design that could be validated. This approach is facilitated by
modeling SLACP in SDL and using the feedback obtained from the validation
facilities provided by Telelogic Tau 4.4 SDT [4]. The SDL model of SLACP is
the basis of the implementation of the protocol in Linux [5, 6].

1 This work was done as a part of Transat project sponsored by European Space
Agency.

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 187–197, 2005.
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The rest of the paper is organized as follows. Section 2 gives an overview of
SLACP. Sections 3 and 4 are devoted to the modeling of SLACP using SDL.
Section 5 deals with SLACP validation and section 6 compares the SDL model
with the actual implementation of the protocol. In section 7 we discuss the
conclusions of the paper.

2 Satellite Link Aware Communication Protocol
(SLACP)

SLACP is a full-fledged logical link layer protocol which provides data transfer,
error recovery and a Quality of Service (QoS) mechanism for enhancing TCP and
other Internet protocol performance on wireless WANs. A detailed description
of the protocol with performance results is given in [5, 6]. We briefly describe the
salient features of SLACP needed to understand the design of the protocol.

The main goal of SLACP is to reduce the errors perceived by TCP. SLACP
uses selective repeat sliding window mechanism [7] for data transfer. Error re-
covery is done using a combination of Automatic Repeat reQuest (ARQ) and
Forward Error Correction (FEC). SLACP provides flow control mechanisms be-
tween the Internet Protocol (IP) layer and the satellite Medium Access Control
(MAC) layer. SLACP performs a QoS mapping in which all packets belonging
to an IP QoS class are directed to a SLACP channel with appropriate QoS pa-
rameters. SLACP supports several logical channels with independent choice of
QoS parameters and error control schemes.

SLACP frames are of two types, control frames and data frames. Control
frames carry the signals to setup, disconnect and reset a channel besides provid-
ing information regarding acknowledgments, packet loss and flow control. Data
frames carry the IP packets. Frames transmitted over each logical channel are de-
livered independently of the frames sent over the other channels. A single high
priority channel, called control channel, allows timely delivery of time-critical
frames such as retransmitted data frames, acknowledgments and control frames.
The frames sent through the control channel are FEC encoded to make them
robust against errors. By default all original data frames are sent without FEC
encoding as the satellite and other wireless channels are relatively error free most
of the time and FEC encoding consumes additional bandwidth.

A problem with the link layer recovery is that it may interfere with the TCP
recovery if the link level recovery takes a long time. We designed SLACP to
minimize the link recovery delay by providing a high priority channel for the
time-critical frames, by using acknowledgments with selective repeat informa-
tion (SACK blocks), by setting the ARQ persistence level to one, together with
employing FEC-encoding to protect retransmissions, and by introducing special
frames such as nothing to send frame and rxmtpkt loss frame. SLACP can re-
cover lost frames readily if the loss occurs at the beginning or in the middle of
a burst of frames, because the loss can be detected immediately with the first
successfully arriving frame. If the tail of a burst is lost, depending on the idle
time until the next burst begins, SLACP might need to rely on a timer gener-
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ated nothing to send frames getting through to trigger selective acknowledgment
telling which frames were lost. Once this selective acknowledgment arrives, re-
transmissions take place as usual. When the SLACP receiver gets the signal
rxmtpkt loss from the sender indicating the permanent loss of a frame, it knows
that the sender is not going to retransmit the frame again and that it can send
all frames up to the lost frame in its buffer to the IP layer.

SLACP implements FEC encoding using Reed-Solomon codes. FEC encod-
ing and recovery is done in a novel way to protect the frames from error bursts
that tend to completely corrupt several consecutive frames. Therefore, the FEC-
encoded redundancy is not added separately to each frame as usual. Instead, the
frames to be FEC protected are organized as FEC blocks. Each FEC block con-
sists of actual frames and redundancy frames. The FEC-encoded redundancy is
added to the redundancy frames by computing the Reed-Solomon codeword ver-
tically so that the ith octet of each frame in a FEC block comprises a codeword.
As soon as a predetermined amount of actual frames deserving FEC protection
has been sent or a threshold timer expires, a proper amount of FEC-encoded re-
dundancy frames are computed to complete the FEC block and are transmitted.
If no actual frames in a FEC block are lost, the redundancy frames are not used
at all at the receiver. If some actual frames are lost, the SLACP receiver waits
till the last redundancy frame of that FEC block or a frame belonging to any of
the later FEC blocks is received. If at least a minimum number of redundancy
frames are present in an FEC block the lost actual frames can be recovered.
This minimum number depends on the parameters of the error correcting code
in use. Under the minimum number, lost frames cannot be recovered by error
correcting.

3 Modeling SLACP Using SDL

The link layer model also includes its interface to the layers above and below it.
So in modeling SLACP we model the interface between SLACP and IP layer as
well as the interface between SLACP and the Media Access Control (MAC) layer.
The modeling of the IP and MAC layers allows us to see the flow control mecha-
nisms between IP and SLACP and between SLACP and MAC. The MAC layer is
also needed to model the delay and link losses in the satellite and wireless links.

The SLACP protocol engine consists of both the SLACP sender and receiver.
The first question is whether to model the SLACP protocol engine (the combi-
nation of the SLACP sender and receiver) as a single entity and have two such
engines as the communicating peer entities. This approach is the usual way of
implementing a protocol and it helps to test the full duplex operation of the
protocol. Since we are designing the protocol from scratch we model the proto-
col in a simple way by separating the sender and the receiver and testing the
functionalities of the sender and the receiver separately. This results in a model
where the SLACP sender receives packets from the IP layer and sends them to
the SLACP receiver via the MAC layer. As SLACP is not concerned with the
processing of the received data by the higher layer, it is not necessary to model
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slacp_sender

sendercontrol(1,1) slacpsender(1,1)

IP_Layer

[ open_chan_conf, open_chan_fail,
   close_chan_notif, close_chan_fail,
   send_packet_conf, send_packet_fail, ... ]

[ open_chan_req,
  close_chan_req,
  send_packet_req, ... ]

Mac_Layer

[ open_req, data_frame,
   nothing_to_send, FEC_data, ... ]

[open_conf, ack,
   FEC_ack, ... ]

slacp_receiver

slacpreceiver(1,1)receivercontrol(1,1)

[ open_req, data_frame,
   nothing_to_send, FEC_data, ... ]

[open_conf, ack,
   FEC_ack, ... ]

[ packet_receive,
  chan_closed, ... ]

system slacp_protocol

Fig. 1. SDL model of SLACP protocol

the IP layer at the receiver side, so in the SDL model the SLACP receiver sends
the received packets to the system environment.

Thus the SDL system model of SLACP consists of the blocks IP Layer,
SLACP Sender, MAC layer and SLACP Receiver (see fig. 1).

SDL allows us to define the system model in a top down manner. This helps
to define processes for special functionalities inside each of the blocks above.

The data structures provided in SDL are convenient to model the various queues
and frame types used in the protocol. Since the MAC buffer has different kinds of
frames, the MAC frame is modeled using SDL choice construct. We use the SDL
timer facility to implement the different timers associated with the protocol.

In the following sections we describe briefly the different blocks of the SDL
model of SLACP. We only describe in words the implementation ideas behind
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the various blocks. As the entire protocol model consists of roughly 100 pages of
SDL code, no concrete SDL code is shown here.

3.1 IP Layer

The main functionalities at the IP layer are to generate the signals for SLACP
channel establishment, channel reset and channel disconnect. The IP layer also
generates data packets to be sent to the SLACP layer. The IP layer handles the
flow control signals coming from the SLACP sender and the notifications from
the SLACP sender to be given to higher layer protocol entities. The layers above
IP are modeled as system environment. When the IP layer gives a packet to
the SLACP sender it is assumed that the packet is given to the correct queue
according to the QoS requirement.

The IP layer block consists of a packet generator process and a signaling
process. The packet generator process handles the functionality associated with
packet generation and the signaling process deals with opening, resetting and
closing of the channel. The signaling process also gives signals to the packet
generator process; for example, when it sends a signal to the SLACP sender
to close the channel, it also signals the packet generator to stop generating
packets.

Initially both the SLACP sender and receiver are in the idle state. When
the sender gets a request from the IP layer to open a channel, it sends a corre-
sponding SLACP frame open req to the receiver, and both the sender and the
receiver negotiate the parameters of the connection. If they agree, they go to the
connected state and the SLACP sender sends an open chan conf packet to the
IP layer. The SLACP sender and receiver remain in the connected state until a
channel reset or a channel close request comes from the IP layer. If the opening
of the channel between the sender and the receiver has failed, the SLACP sender
sends a open channel fail to the IP layer. Closing of the channel is modeled us-
ing a timer called channel close timer at the IP layer and when it expires the
signaling process issues a close chan req to the SLACP sender.

After the connection establishment, the IP layer issues a send packet req to
the SLACP sender for each outbound packet to which SLACP sender replies
with the status of the buffer. If the buffer is available at the SLACP sender, the
IP layer sends packets to the SLACP sender. The SLACP sender also informs the
IP layer whether a packet was successfully delivered to the receiver. The packet
generator process controls the generation of packets using the information it
receives from the SLACP sender regarding the buffer status. Thus flow control
is modeled between the IP layer and the SLACP sender.

3.2 SLACP Sender

In principle there are n senders for the n different logical channels but as senders
are independent it is adequate to model one sender. The SLACP sender con-
sists of two processes, sender and sendercontrol. The sender process represents
the entity carrying out the processing of signals for ordinary data channel and
sendercontrol represents the entity carrying out the processing of signals in the
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control channel. We model SLACP sender for a particular choice of QoS and
ARQ-FEC parameters.

After connection setup, when the SLACP sender receives a packet from the
IP layer it adds a header and a trailer to it to form a frame and enqueues the
frame in the buffer. As SLACP is a sliding window protocol the sender always
ensures that only a limited number of unacknowledged frames can exist at a time.
The maximum number of unacknowledged or outstanding frames is called the
the window size at the sender. If the window is not full, the sender process sends
the SLACP frame to the MAC layer if the MAC buffer is free and updates the
scoreboard data structure. The scoreboard records the information regarding
the frame such as its sequence number, its address in the SLACP buffer and
whether it has been retransmitted or not. The scoreboard data structure is used
to implement the selective repeat mechanism. If the MAC buffer is not free the
sender process keeps the data frame in its buffer. This way the SLACP sender
controls the flow between the MAC and IP layers.

The sendercontrol gets the FEC encoded acknowledgment (ACK) frames
from the SLACP receiver and it forwards the ACK frames to the sender process.
If the data frame has been received correctly, the frame is dequeued from the
sender buffer, otherwise it is retransmitted. When the sender receives a selec-
tive acknowledgment (SACK) from the SLACP receiver, it retransmits the lost
frame to the sendercontrol. The details of the lost frame are obtained from the
scoreboard. The sendercontrol forwards the FEC encoded retransmitted frames
in an FEC block. SLACP is not meant to be a fully reliable link protocol and
in the normal operation the ARQ persistence is set to one. If a retransmitted
frame is lost, the SLACP sender sends a packet loss notification to the IP layer
and also a rxmtpkt loss to the SLACP receiver. When the SLACP sender has
no data to send it sends a nothing to send frame to the receiver.

When the SLACP sender gets a request from the IP layer to close the channel
it sends a data frame with no data to the SLACP receiver to indicate the closing
of the channel. After receiving the ACKs for all the data sent to the receiver, the
SLACP sender sends a close channel notif to the IP layer and goes to the idle state.

3.3 MAC Layer

The MAC Layer pictured here is the part of the MAC layer as seen by SLACP.
So we abstract from the segmentation and reassembly at the MAC layer. The
MAC layer has to perform the function of delivery of frames between SLACP
sender and receiver. It also gives flow control information to both the SLACP
sender and receiver. The MAC layer queues all the frames it receives from the
SLACP layer and sends a frame to the SLACP layer when a link timer expires.
The timeout of the link timer represents the delay in the wireless link. The MAC
layer is also modeled to drop frames to simulate the behavior of frame losses due
to bit corruption on the link. This is an important feature in order to validate the
error recovery functionality in the SLACP protocol. We used a simple modulo
based counter to determine which packet is to be dropped, though one can use
random number generation to drop frames in an arbitrary manner.
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3.4 SLACP Receiver

The SLACP receiver consists of two processes, namely receiver and receivercon-
trol. The receiver process represents the entity carrying out the processing of
signals for ordinary data channel and the receivercontrol process represents the
entity carrying out the processing of signals in the control channel.

SLACP receiver checks whether the frame received is a frame within the
receiver window. The lower edge of the window represents the sequence number
of the next frame to be received or the frame expected. When the frame received
is the frame expected, the receiver process sends the received packet to the
system environment. If the frames are received out of order within the window,
the frames are kept in a reassembly queue. When the receiver process receives a
number of data frames equal to an acknowledgment threshold value or when it
receives an out of order frame, it sends an ACK frame. The ACK frame carries
both a cumulative ACK sequence number and the SACK block. The SACK block
indicates any out of order frames received after the cumulative ACK sequence
number. The SLACP sender constructs an FEC block to retransmit all frames
indicated as lost in the SACK block.

When the receivercontrol process receives an FEC block it sends an FEC ACK
to the sendercontrol process. Similar to the ACK frame, the FEC ACK frame
also has a cumulative ACK and an FEC-SACK block. The receivercontrol de-
codes the FEC block when it arrives and forwards the correctly received frames
to the receiver process. Instead of using FEC coding to compute redundancy
frames, each actual frame in the FEC block is duplicated as a redundancy frame.
If a duplicate for a lost actual frame is present among the redundancy frames,
it simulates the recovery of the frame.

4 The SDL Model as an Aid to the Design of SLACP

We develop the SDL model of SLACP in an incremental manner by succes-
sively refining the protocol design at each stage. Initially the protocol skele-
ton is built by including all the blocks and processes with minimal function-
ality in the blocks and processes. This helps to establish the basic interac-
tion patterns between the processes and the blocks. Initially the functionali-
ties for opening and closing a channel are included to build the basic model.
We select these functionalities first since they are basic for communicating pro-
cesses and in our model they involve all the protocol blocks in fig. 1. With
this choice we could model the basic signaling mechanisms and see the pat-
terns of interaction between the various design elements. The interactive mode
of use of SDT helps to exercise the preliminary design by suitable choice of
the parameters such as those for opening and closing a channel. For exam-
ple, closing of a channel can be simulated by setting the duration of the chan-
nel close timer to a small value. After opening the channel, the IP layer will send
a close chan req to the SLACP sender and this in turn closes the channel. From
the Message Sequence Charts (MSC) generated we can see that the basic model is
working.
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In the second level of modeling the objective is to ensure that the data transfer
can take place in the simplest possible setting. So we build enough additional
functionality into the model to enable a single packet to be transferred from the
sender to the receiver when there are no losses due to errors and there is no
flow control. At this stage we extend the model with functionalities necessary
for generating a packet at the IP layer, and delivering it to the SLACP receiver.
This scenario is simulated by the IP layer opening the channel and sending a
single packet to the SLACP sender and then closing the channel.

The third level of modeling is to include the flow control between IP and
SLACP layers as well as between SLACP and MAC layers. We enhance the
model from the previous stage by adding functionalities for queuing the frame
at the SLACP sender and MAC buffers and for flow control mechanisms based
on the buffer availability. The composite model is tested by setting the size of
the SLACP sender buffer and MAC buffer to small values.

At the fourth level of modeling we incorporate ARQ-FEC error control
schemes. We add the SACK mechanism, buffering and timer features to han-
dle FEC coding. As it is not necessary to choose the actual FEC encoding in
the model, we use a simple frame replication instead. The FEC recovery scheme
follows the description in section 2.

In order to examine the working of the error recovery scheme we send several
data frames to the receiver of which only the first data frame is lost. This helps
to isolate the errors if they are present. Once we find that the model is able to
recover from a single frame loss, we can simulate the loss of several frames at
the MAC layer and check that the model works for different error scenarios.

At this point we have essentially built the SLACP model with all the features
of the protocol included in it. As we build the model cumulatively, and at each
stage make use of the functionalities at the earlier levels as well in extending the
model, we have confidence in the basic correctness of the design.

The next phase deals with testing and simulation. We exercise the protocol
model using the test scenarios and observe its working. Having gained confidence
about its working, we begin the validation phase. The SDL model of SLACP is
about 100 pages long and it took about 3 man months to develop and validate
the protocol.

5 Validation of SLACP Using SDL

Telelogic Tau 4.4 SDT tool is used for validating SLACP. We formulate the
following validation scenarios which represent the protocol operations. The sce-
narios correspond to the different levels of modeling described earlier.

– Opening / Closing a channel
– Sending and Receiving a frame without frame loss
– Sending and Receiving a frame without frame loss and flow control
– Sending and Receiving frames with frame loss (using ARQ and FEC)
– Sending and Receiving frames with frame loss and flow control
– Resetting the channel



Experiences in Using SDL to Support the Design and Implementation 195

Each of the above test scenarios is validated using the automatic validation
methods available in SDT. In automatic state space exploration SDT builds a
reachability graph for the system model. The state space is the set of all the
states of the system that can be reached from its initial state by systematically
exploring all the transitions. A number of general properties of a protocol such
as deadlock freedom, absence of unspecified signal reception and unreachable
code can be verified by exploring the state graph. As exhaustive state space ver-
ification becomes infeasible with a large state space, alternatives such as bitstate
exploration and random walk methods that explore a large fraction of the state
space are used [8]. By choosing as small a value as possible for the sizes of data
frame, SACK block and buffers, we can reduce the complexity of the state space
to some extent.

The validation reports point to the errors encountered in the state explo-
ration. This is especially valuable as it examines scenarios that are unlikely to
be considered in the test suite. For example, consider the following scenario:
the SLACP sender sends a frame and the frame is lost; the receiver asks for
a retransmission and the sender retransmits it; this FEC encoded retransmit-
ted frame gets delayed and arrives at the receiver at a later time; by that time
the receiver might have sent the frames in the reassembly queue to the higher
layer assuming that this frame is lost. Such a delayed frame may create prob-
lems if we do not have the sanity check at the receiver to see whether the frame
received is within the receiver window. It is difficult to create the above sit-
uation manually but the exhaustive state space exploration can readily set it
up. Automatic validation also helps to exercise the scoreboard and the various
queues.

The SDT option to display the execution trace that leads to an error state is
useful to detect errors and fix them. The flexibility of the tool to show the path
of error both in the SDL graphs and in the MSC supports debugging.

Automatic validation helps to ensure that the special frames such as noth-
ing to send and rxmtpkt loss perform as intended in the protocol design.

6 SLACP-SDL Model Versus SLACP Implementation

After validating the SDL model, we implemented the SLACP protocol in C for
the Linux operating system. The C implementation closely followed the SDL
model. However, there are some differences between the SDL model and its
implementation in addition to those differences discussed earlier (FEC encod-
ing/decoding not modeled, only a single SLACP channel modeled). In the fol-
lowing we highlight some of these more or less subtle differences.

In the SDL graphs, explicit flow control signals exist between the SLACP
and IP layer. In the Linux implementation these signals are implicit as the
SLACP protocol engine accepts a packet from the IP underbelly interface only
when buffer space is available at the SLACP layer, effectively implementing the
flow control between the layers. In addition, the flow control details between
the SLACP and MAC layer in the Linux implementation depend on the link
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technology and device in use. Therefore, an abstract model of the SLACP-to-
MAC flow control can be used in the SDL graphs.

In the SLACP implementation the SACK block in the ACK frame is imple-
mented as a bit map. Each bit in the SACK block together with the cumulative
acknowledgment sequence number of the ACK frame represents whether a frame
has been successfully received (bit set to 1) or not (hole, bit set to 0). Since
bitmaps and their operations are not easy to represent in SDL, each bit in the
SACK block is actually a structure with a field for the corresponding sequence
number and a boolean value indicating whether the frame was successfully re-
ceived or not. The code for iterating through such a structure to check whether
the SACK block is empty is clearly not as trivial as the simple check for zero
bit map in C. Therefore, an additional field indicating whether a SACK block is
empty was added in the SDL model.

In the automatic validation of SLACP, the symbol coverage was 94.99 %. If
the symbol coverage is not 100%, the validation cannot be considered finished
without a clear understanding of the missing coverage. We analyzed the uncov-
ered symbols in the SDL graphs. Most of them were either invalid end states or
conditions that do not occur. In the Linux implementation there are even more
invalid states as a real protocol implementation has to test for many error con-
ditions that do not occur except in some very exceptional conditions such as in
case of broken or otherwise misbehaving implementation of the peer. Achieving
100 % symbol coverage with such sanity checks included into the SDL model
would require that any such misbehavior is implemented and enforced in the
peer protocol engine. Therefore, we decided to exclude most of these checks in
the SDL model.

7 Concluding Remarks and Future Work

In this paper we have described the design and development of SLACP protocol
using SDL modeling. A validation oriented approach to protocol design was
employed to develop the protocol in a hierarchical stepwise refinement manner.
This helped to control the complexity of the design and to better understand
the interaction of the protocol components. The SDL model was used as a basis
for the implementation of the protocol in Linux.

We found that the SDL model developed in this approach was convenient
to adapt by incorporating implementation specific details such as FEC encoding
scheme using Reed-Solomon codes. With hindsight we observe that this ability to
adapt the SDL model to actual implementation is quite valuable as the design
is not encumbered with implementation specific aspects. We believe that the
approach to SLACP design can be used for general protocol design.

The SLACP protocol validation has no doubt increased the quality of the
produced protocol implementation. However, we still cannot say that the proto-
col model has been formally verified: a 100% guarantee that the protocol works
as intended in all possible cases has not been yet achieved. Partly this is because
the SDT validator tool does not really support all possible kinds of behavioral
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properties that we would like to verify from the system. For example a property
such as “a channel open in IP-layer will in all cases either lead to channel es-
tablishment or to channel open failure signal” is simply not expressible within
SDT validator. Another thing that limits the reliability factor of our validation
is the fact that our protocol model is huge in terms of size of reachability graph
and since the SDT validator does not really have any sophisticated state space
reduction algorithms, we have to rely on approximate methods such as bit state
hashing. For these reasons we consider starting a follow-up project where we
are planning to do a full fledged formal verification of SLACP with Spin model
checker [8]. Partly this will be a challenge to the Spin tool itself: it will be in-
teresting to see how a state of the art verification tool can treat a complex real
world protocol.
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Abstract. This paper deals with mobility protocols specification, vali-
dation and testing using a formal approach. A well suited SDL model is
proposed to handle the component-based nature of Mobile systems. Two
solutions are proposed to derive automatically TTCN-3 test cases from
the SDL model.

1 Introduction

Mobility is one of the increasing demands in the telecommunications area. Mo-
bility systems are complex, as they are composed of several distributed, hetero-
geneous and obviously mobile components. Thus, there is an important need
to develop methodologies that help to specify, to validate and to test the com-
ponents efficiently. This paper deals with this need using formal approaches.
Indeed, it is widely recognized that formal methods are suitable for specifying
complex systems. Moreover, they help in verifying and validating the standard
specifications as well as easing the test case generation and maintenance [1].

It has long been known that automatic test case generation is improves the
correctness and the quality of test cases [11]. Moreover, it allows fast test genera-
tion at a lower cost [16]. Therefore, it appears obvious to study how appropriate
the automatic test case generation could be for testing mobility protocol.

Several approaches based on automatic test case generation from formal ap-
proaches already exist [11, 12, 17]. The formal description languages generally
used are SDL (Specification and Description Language) [9] and MSC (Message
Sequence Chart) [8]. The produced test cases are written in TTCN-2 (Tree and
Tabular Combined Notation version 2) language [7]. Recently, the European
Telecommunication Standard Institute (ETSI) proposed TTCN-3 (Testing and
Test Control Notation version 3) [5] language. TTCN-3 is a test specification and
implementation language for testing reactive and distributed systems. Thus, it
offers a framework for distributed systems as mobility system. In order to take
advantage of TTCN-3 features and to benefit of formal approaches, it appeared
adequate to address TTCN-3 test case generation from formal approaches.

Other work regarding specification, validation and test case generation of
mobile protocols using formal approaches has been carried out (such as [2, 13])
but to our knowledge, there is no work dedicated to the specific case of mobility
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management. This leads one to suppose that the work presented here is one of
the first dedicated to TTCN-3 test generation from formal specification for the
new MIPv6 protocol.

The paper is structured as follows. Section 2 gives a short description of the
Mobile IPv6 (MIPv6) protocol [10]. The main issues of MIPv6 protocol specifi-
cation and the main results obtained during verification and validation of MIPv6
protocol are also presented. Section 3 describes the proposed test architecture
and the two approaches suggested for TTCN-3 test cases generation from a SDL
model. The problems encountered and MIPv6 TTCN-3 test cases produced
using these two approaches are presented. The paper ends with conclusion and
future work in section 4.

2 Specification and Validation of MIPv6 Protocol

In the Internet community, the Mobile IPv6 (MIPv6) is the mobility support in
the new version of the Internet Protocol called IPv6. As a new protocol, it is
important to verify that it does not contain inconsistencies and ambiguities.

2.1 Short Overview of MIPv6 Protocol

MIPv6 is defined by IETF (Internet Engineering Task Force) in the Request For
Comments RFC 3775 [10]. It enables a node to remain reachable while moving
from its Home Network to other networks called Visited Networks.

MIPv6 protocol is described in shape of three main components. The Mobile
Node (MN) represents any node able to move through the Internet network while
maintaining its communications. The Home Agent (HA) is an access router of
the home network that manage the accessibility at anytime to the MN inde-
pendently of its localization. The Correspondent Node (CN) is any node which
communicates with the MN.

Validation and testing mobility management in MIPv6 consists in ensuring
that the three following main procedures (detailed in [10, 14, 15]) are correctly
implemented: (1) Movement Detection: all procedures performed by the MN to
detect movement, (2) IPv6 address auto-configuration: all procedures allowing
the MN to obtain a consistent IPv6 address, and (3) Location Update: all pro-
cedures allowing the MN to maintain its communications.

2.2 Specification Step: Main Issues

As the ultimate purpose of this work is to generate automatically test cases from
formal specification, the main issue in the specification step is to build a model
that will facilitate test generation. On the other hand the model has to be well
suited for verifying the three main mobility procedures described above. The
SDL (Specification and Description Language) language [9] is used to write a
precise and rigorous specification.
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Two approaches were studied to specify MIPv6 mobility management:

1. MIPv6 model with MIPv6 components: Only the three main MIPv6 com-
ponents are represented in the model. The main problem of this approach
is that there are no representation of the mobile node movement. Thus, it
is not possible to check mobility procedures. The MIPv6 components are
viewed as fixed components which exchange messages.

2. MIPv6 model with environment and access router views: In order to take into
account mobility, the main question is which components trigger and take
part in the execution of mobility? Two main concepts are important:
(a) Mobile node environment: the MN detects movement when an awaited

message from its current access router is not received. It is due to phys-
ical moving of the MN or to any other event of the environment that
intercepted the message.

(b) Different views of the access router by the MN: when the MN moves, it is
successively connected to several access routers. These routers have the
same behavior but are perceived in a different way by the MN. Indeed,
they can be a Current Access Router (CAR), or a New Access Router
(NAR) or an Other Access Routers (OTHAR).

Thus, the environment and the way the MN perceives an access router must be
taken into account to model mobility in a suitable way. As a consequence, seven
new components are integrated into the model as shown on fig. 1:

– Three access router processes (AR1, AR2 and AR3 on fig. 1) related to
the three views of access router are defined. A single Access Router (AR)
process could have been defined to represent at the same time CAR, NAR
and OTHAR. In this case, these three processes would be created during
simulation. However, the issue would be the management of mobility during
simulation. For instance, it will be difficult to manage successive connections
of the MN to various access routers while preserving the uniqueness of the
connection to a single access router.

– Three environment processes (AR1MNEnv, AR2MNEnv and AR3MNEnv
on fig. 1) related to the three access router processes are defined. According to
the mobility context established, these environment processes intercept the
messages exchanged between the MN and the access routers. The mobility
context defines the access router which is reachable by the MN (the CAR).

– One Controller of environment (Controller on fig. 1) is defined to establish
a consistent mobility context.

Figure 1 shows an SDL system of MIPv6 protocol (mipv6 sys) and the SDL block
access router (AccessRouter). The three MIPv6 components are represented as
well as the seven additional mobility components. The signals exchanged between
components are also specified, as described in the RFC 3775 [10].

To allow a suitable description of mobility, this choice of modeling gives a
global sight of the mobile system. Moreover, it highlights the behavior of a
specific component and its interactions with other components.
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system  mipv6_sys
use  MIPv6Packages;
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Fig. 1. SDL model: MIPv6 System and AccessRouter block

Another issue was to specify multicast. Multicast allows a MN to discover a
new access router. The access router is unknown and a message is sent to the
multicast router address. The difficulty is that the multicast message sending
is not intended to a known entity but to the entity that having a specific data
value. In SDL, the receiver of message must be explicitly defined through the
keywords to, via and via all. The chosen solution consists to send to all processes
(via all) the multicast message. According to the mobility context established by
the controller process, only the reachable process, thus the current access router
of the MN, will receive the message.

2.3 Verification and Validation Step: Main Results

Verification and validation are made through respectively interactive and ex-
haustive simulations. Based on the obtained MIPv6 model, several simulations
were performed using the ObjectGeode 4.2 tool [18]. Through GOAL (Geode
Observation Automata Language), ObjectGeode allows a better definition of
properties. The MSC (Message Sequence Charts) language [8] is used to de-
scribe the behavior generated during simulations.

Figure 2 shows partly the MSC model generated from an interactive simu-
lation of MIPv6 model. Some significant messages are in bold font. This MSC
describes a scenario obtained when the mobile node leaves its home network
to AR1 network. First of all, the Controller of environment (PROCESS con-
troller(1) in the figure) modifies the mobility context by sending mobility mes-
sages (mobilityoption()) to indicates that only the AR1 router is reachable. Upon
reception of mobility trigger (l2 trigger), the MN performs movement detection
procedures (exchange of neighbor solicitation (ns()) and neighbor advertisement
(rs()) messages) and detects unreachability to its home agent. The MN then
performs address auto-configuration procedure (exchange of router solicitation
(rs()) and router advertisement (ra()) messages followed by location update pro-
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Fig. 2. Generated MSC: Mobile Node leaves home network to the AR1 network

cedure (exchange of binding update (bu()) and binding acknowledgment (back())
messages).

Different properties were checked, here are the main groups:

– Neighbor Unreachability Detection: checking that reachability to the current
access router is always carried out when the MN receives a mobility trigger.

– Address Auto-configuration: verifying that address configuration is always
carried out when the MN changes network.

– DAD (Duplication Address Detection): checking that DAD procedure is al-
ways performed before any address configuration.

– Home registration: verifying that binding Update with Home Agent is always
carried out when MN changes network.

– Return Routability: verifying that return routability procedure is always car-
ried out before the correspondent registration procedure.

– Correspondent Registration: verifying that correspondent registration proce-
dure is carried out only when the MN changes network.

The results allow verification that the mobility procedures were specified as
described in the RFC 3775 [10]. Moreover, the results obtained during simulation
did not reveal any inconsistencies. To certain extent, it confirms that the MIPv6
mobility procedures are stable.

We can also notice that, due to integration of MIPv6 components in the
same model, interactive and exhaustive simulations of a component-based model
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(MIPv6 in our case) allows checking and validation of the behavior of each com-
ponent and the interoperability between all components of the model. Indeed,
validation of one component requires the validation of its interactions with other
components.

3 Test Suite Generation

The ultimate purpose of this work is to generate test cases for the MIPv6 pro-
tocol. Because it improves the correctness and quality of test cases [11] and it
allows fast test generation at a lower cost [16], automatic test case generation
from formal specification is chosen for testing mobility protocol.

3.1 Test Architecture

As usual, before test generation, the test architecture must be defined. It consists
in determining the Implementation Under Test (IUT) and its interfaces, the Test
System (TS) and its Points of Control and Observation (PCOs), together with
the environment through which the TS and the IUT will interact.

Due to the components-based structure of the model, the definition of the
test architecture becomes more flexible. Indeed, depending on the aspects one
may want to focus on, the IUT can be any component in the system or the whole
system. The chosen model supports test architectures for both conformance and
interoperability testing. It also allows a distributed approach for testing.

Test Architecture for Conformance and Interoperability Testing
Defining an architecture for conformance testing, consists in choosing the IUT
among the components of the model and to consider the remaining components
as part of the test system. Figure 3(a) shows a test architecture for conformance
testing. The IUT chosen is the mobile node (MobileNode). The home agent, the
correspondent node and the access router are considered as part of MIPv6 test
system. Seven PCOs are defined between IUT and MIPv6 test system.

Defining an architecture for interoperability testing consists in choosing the
components for which interoperability has to be tested. The remaining compo-
nents correspond to the test system.

Distributed Test Architecture
Due to the component-based and distributed nature of MIPv6, it is possible to
consider a distributed test architecture. An example of distributed test archi-
tecture for conformance testing of MIPv6 mobility management is shown in the
fig. 3(b). The IUT chosen is the mobile node. The MTC (Main Test Component)
is represented by Access Router with mobility controller. The MTC communi-
cates with two PTCs represented by the home agent and the correspondent node.
The PCOs and CPs (Coordination Points) are also indicated in the fig. 3(b).

Notice that during test deployment, a really distributed test architecture can
be easily configured because the PTC and the MTC simulate the behavior of
the components which are really distributed in practice.
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Fig. 3. Architecture for conformance testing and distributed testing architecture

3.2 TTCN-3 Test Cases Generation Based on Formal Approach

Different approaches based on automatic test generation from SDL languages
already exist [11, 12]. In these approaches, the test cases generated were written
using TTCN-2 (Tree and Tabular Combined Notation version 2) language [7].
Recently, TTCN-3 (Testing and Test Control Notation version 3) [5] has been
proposed. In order to take advantage of TTCN-3 features and to benefit from
formal approaches, it appeared adequate to address TTCN-3 test cases gener-
ation from formal approaches. To our knowledge, there is no methodologies or
tools to automatically generate TTCN-3 test cases from a formal approach. In
the following, we propose two approaches for this purpose.

TTCN-3 Test Case Generation by Combining Existing Approaches
In this approach, the TTCN-2 test cases are first generated automatically from
SDL [17, 18]. Then, the obtained TTCN-2 test cases are translated into TTCN-3
test cases using TTCN-2 to TTCN-3 Converter tools.

This approach was applied for MIPv6 mobility management testing. The
validation steps were performed as described in section 2.3. The TestComposer
tool [18] is used to automatically generate TTCN-2 test cases. For this purpose,
a test architecture and the SDL test purpose are defined. The test architecture
(IUT, PCOs, Lower Tester, Upper Tester, alias, . . . ) is appropriately modified to
generate conformance and interoperability test cases. Telelogic TAU TTCN [18]
suite is used for TTCN-2 test case syntactic and semantic analysis. The DANET
Converter [3] is used to translate the obtained TTCN-2 test cases into TTCN-3.
Finally, the DANET TTCN-3 toolbox is used to update the TTCN-3 test cases.
The fig. 4 shows a TTCN-2 test case automatically generated with TestCom-
poser. The defined IUT is the Correspondent node. This TTCN-2 test case cor-
responds to correspondent registration procedure detailed in Sections 5.2.5 and
5.2.6 of mobility support [10].
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Fig. 4. Tabular TTCN-2 test case: Correspondent Registration procedure

Fig. 5. TTCN-3 test case: Correspondent Registration procedure

Figure 5 shows the TTCN-3 test case obtained after translation of the
TTCN-2 test case. One can identify the two parts of the module: the decla-
ration part from line 2 to 45 and the control part at line 46. In the declaration
part, one can identify TTCN-3 concepts: the ASN.1 type declarations, the test
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configuration (one test component, a test system interface, and port types), the
group of templates, the default dynamic behavior and the test case behavior.

This approach has the advantage that it allows a fast TTCN-3 test case
generation when TTCN-2 test cases are available. As an automatic approach, it
allows fast TTCN-3 test cases generation. Indeed, generating a new TTCN-3 test
case just consists in the definition of a new test purpose. However, this approach
forces the production of TTCN-2 test cases before obtaining any TTCN-3 test
cases. As a consequence, it is limited by the weaknesses of TTCN-2 language.
For instance, the definition of the distributed test architecture is difficult to
automatically derive into TTCN-3. Moreover, this approach is entirely dependent
of different manufacturers tools. That increases the risk of losing information
during translations and tool migrations.

TTCN-3 Test Generation Based on MSC Generated by Simulation
This approach produces TTCN-3 test cases directly from SDL and MSC spec-
ifications. It is inspired by recent work proposed by Ebner [4] on translation of
MSC elements into TTCN-3 statements. Contrary to the Ebner approach where
the MSC is obtained from UML (Unified Modeling Language) sequence chart,
we propose to automatically generate MSC by simulation of the verified and
validated SDL model. Our approach is performed through three steps:

Step 1: Based on valid SDL model, automatically generating MSC during in-
teractive and exhaustive simulations. The MSC generated during interac-
tive simulation allow for specific scenarios and components of the system,
whereas the MSC generated during exhaustive simulation is used to test the
whole scenarios and components of the system for a specific test purpose.
The property defined for exhaustive simulation represents the test purpose
for which test case has to be generated.

Step 2: Based on a test architecture, translate generated MSC into MSC test
cases by defining the corresponding test elements (IUT, PCOs, . . . ).

Step 3: Translating MSC test cases into TTCN-3 test cases.
Three levels of translation must be considered:

TTCN-3 Data Types: We propose to re-use existing tools such as TTCN-
Link [18] to automatically generate TTCN declarations from the SDL
specification.

TTCN-3 Test Configuration: For TTCN-3 distributed test configura-
tion, we propose to map SDL elements into TTCN-3 statements:
1. Choose the IUT among the SDL blocks (or processes).
2. Select one or several SDL blocks as the MTC. Each of remainder SDL

blocks becomes the PTC. Consequently, the SDL channels between
SDL blocks (other than the selected IUT) are defined as TTCN-3
CPs and belong to Test System (TS). Whereas the SDL channels
between the SDL blocks selected as IUT and remaining SDL blocks
are defined as TTCN-3 ports and belong to the TTCN-3 Test System
Interface (TSI).

3. Define SDL signals carried by SDL channels as TTCN-3 input/output
messages exchanged through TTCN-3 ports.
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TTCN-3 test case behavior: To produce TTCN-3 test case behavior, we
suggest to map MSC test case to TTCN-3 test case as proposed in [4]. For
distributed test, we firstly need to add condition state to the MSC test
case in order to specify the beginning and end of each PTC function,
and synchronization between test components. This idea was already
suggested to generate concurrent TTCN test cases from SDL specifica-
tions and MSC test purposes [6].

msc_case_home_ar1

ns( ’ff80:0:0:0:200:ff:fe00:a3a3’,’fe80:0:0:0:200:ff:fe00:a0a0’,’fe80:0:0:0:200:ff:fe00:a0a0’ )

bu( ’3ffe:501:ffff:102:200:ff:fe00:a3a3’,’3ffe:501:ffff:100:200:ff:fe00:a0a0’,’3ffe:501:ffff:100:200:ff:fe00:a3a3’,0 )

back( ’3ffe:501:ffff:100:200:ff:fe00:a0a0’,’3ffe:501:ffff:102:200:ff:fe00:a3a3’ )
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hot( ’3ffe:501:ffff:100:200:ff:fe00:a0a0’,’3ffe:501:ffff:102:200:ff:fe00:a3a3’ )

rs( ’3ffe:501:ffff:100:200:ff:fe00:a3a3’,’ff02:0:0:0:0:0:0:2’,1 )

ra( ’3ffe:501:ffff:102:200:ff:fe00:a4a4’,’3ffe:501:ffff:100:200:ff:fe00:a3a3’,’3ffe:501:ffff:102:’,1,’3ffe:501:ffff:102:200:ff:fe00:a3a3’ )

l2_trigger

coti( ’3ffe:501:ffff:102:200:ff:fe00:a3a3’,’3ffe:501:ffff:104:200:ff:fe00:a8a8’ )

cot( ’3ffe:501:ffff:104:200:ff:fe00:a8a8’,’3ffe:501:ffff:102:200:ff:fe00:a3a3’ )

bu( ’3ffe:501:ffff:102:200:ff:fe00:a3a3’,’3ffe:501:ffff:104:200:ff:fe00:a8a8’,’3ffe:501:ffff:100:200:ff:fe00:a3a3’,1 )
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Fig. 6. An MSC test case

This approach was applied for MIPv6 mobility management testing. Several
simulations both interactive and exhaustive were carried out in order to generate
MSC. Figure 6 shows an MSC test case obtained by translation of generated
MSC (on fig. 2). The distributed test architecture on fig. 3(b) is used. The
corresponding TTCN-3 test case obtained is illustrated on fig. 7. This TTCN-3
test case corresponds to the MIPv6 mobility procedure described in Sections
11.5 and 11.7 of the mobility support RFC 3775 [10].

This approach has the main advantage that it does not need to first derive the
TTCN-2 test cases. It thus allows advantage to be taken of the new TTCN-3 fea-
tures as distributed test configuration. However, this approach should be tested
more, in particular the PTCs synchronization notions. In addition, a mapping
into TTCN-3 of the MSC lost message, frequently used in mobility management
to detect mobile node movement, must be studied. A drawback of this approach
is that the mappings of MSC and distributed test architecture into TTCN-3
test cases is still manual. Implementation of the mapping in a tool will allow
automatic generation of TTCN-3 test cases from SDL specifications.
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Fig. 7. TTCN-3 Test case: the MN leaves home network to the AR1 network

4 Conclusion

In this paper, we propose a suitable model to handle the component-based na-
ture of Mobile systems. The results obtained during simulation of the MIPv6
model appeared good enough to verify and validate the specification. Due to
judicious choices made after modeling, we showed that verification and vali-
dation of a component-based model allows simultaneously verification and val-
idation of a specific component and of interoperability between components.
We also show that this modeling choice allows flexibility and easy definition of
test architecture. Both conformance and interoperability testing are then pos-
sible. Two approaches are proposed to derive TTCN-3 test cases from SDL.
Future work concerns execution of obtained TTCN-3 test cases for conformance
and interoperability testing as well as deployment of distributed test
architectures.
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Abstract. Cinderella SLIPPER is a C-code generator that generates C
code from SDL and ASN.1 models defined in Cinderella SDL. The code
generator has been designed to produce compact readable C code, as one
of the major obstacles of using generated code from design specifications
is that software developers are inhibited by difficulties to understand the
generated code.

1 Introduction

Clarity and comprehensibility of generated code are considered as major param-
eters of the code generation tool for the practicing software engineers [4]. It is
crucial for the software engineers to easily read and understand the generated
code to support the integration with other software components. SLIPPER has
been designed using software patterns to ensure a code generation that is clear
and easy to read.

Code clarity is essential also for the integration of the generated code with
other software components. Another key demand for generated code is its im-
mediate correspondence to the SDL specification (design model) structure and
entities from which the code is being generated.

SDL is an object-oriented language while C is not. Nevertheless, the generated
code has to preserve the encapsulation of software object internal behavior and
data. It is achieved by creating sets of operator functions for each data type.
These sets allow implementation of the most sophisticated data types created
by means of the SDL.

SLIPPER currently supports SDL-92, and generates code only for the in-
stances of SDL entities (finalized) but not for SDL entities defined as types.
This is done to prevent the creation of an excessive amount of unused code and
to simplify understanding of the generated code.

To show the capabilities implemented in the SLIPPER code generator we use
examples from a model of a new standard, Digital Mobile Radio (DMR) [1, 2]
that is being developed in ETSI. Although the SDL model of the DMR protocol

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 210–223, 2005.
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Fig. 1. The SDL example model of the DMR system

stack has been developed primarily for validation and testing purposes it still can
be used to demonstrate how SLIPPER code generation is used in the software
development process.

Example SDL Model. The DMR system defines a new private mobile radio
standard that enables a large variety of different Private Mobile Radio systems
to be implemented. This includes both systems based on direct mode (mobile
station to mobile station) as well as systems including one or more repeater
stations (Base station). In this paper we will use examples from an SDL model
of the two lower layer protocols in the terminals and in the base stations. The
model developed covers the layer 2, Logical Link control (LLC) and the layer 3,
Call Control Layer (CCL). The system model overview is shown in fig. 1.

2 Code Generation Principles

The code generated using SLIPPER is based on an imperative mapping [6] from
the SDL model to the C code. Also, the aim has been to generate code based
on patterns that are easy for a software developer to read and understand. So
the SLIPPER tool does not specifically support configuration of the code gen-
eration, for example to improve performance of the generated code as in [3]
and [5].

Code generation from SLIPPER is organized in a way that resembles the
structure of the SDL model. The SDL model structure and behavioral entities
are preserved in the generated C-code as described in this section.
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2.1 Code from SDL Behavioral Constructs

For each SDL behavioral entity such as a process and service, SLIPPER gener-
ates the following C modules:

– A “C” source code file that contains the code for the data flow and setup
functions.

– An “H” file that includes definitions of data types and references to the C
functions that implement data type operator functions. The data types are
declared in the scope of the enclosing entity (SDL diagram).

– A “C” file that includes data type operator functions.
– An “H” file that includes type definitions for the signals and the timers,

which are defined in the scope of the SDL behavioral entity.

2.2 Source Code Organization of Structural SDL Entities

The file structure of the generated code reflects the hierarchy of the SDL spec-
ifications. The code, generated for the SDL agent entity, is placed into its own
unique directory. The name of the directory coincides with the name of the SDL
agent. Separate directories are created for the following SDL entities:

– System
– Package
– Block
– Process
– Service
– Procedure

There exists a direct mapping from the SDL diagrams to the directories
created by code generation. Thus a System diagram is always the root directory
in the hierarchy of the directories tree except for directories built for packages
referenced in the same diagram as the system itself. A diagram may include
references to enclosed agents. The directory of such a diagram will include the
sub-directories corresponding to contained referenced entities.

Two additional directories are created on the system directory hierarchy level.
The code placed in these directories supports simulation and it should be sub-
stituted by user code when implementing a target code application:

– The "kernel" directory contains code that includes data for the kernel that
simulates a Real-Time Operating System (RTOS).

– The "code simulation" directory includes code that simulates external sys-
tem signals and provides tracing of code simulation sessions.

At least one file containing executive C code is built for each SDL agent entity
included in the SDL specification. For the container type agents (system or block)
the files will include setup functions generated for the entities referenced in the
context of the system or block diagram. The setup code file name is constructed
from the name of the corresponding SDL agent, a unique identifier derived by
SLIPPER from the tree representation of the SDL model and as the last part
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Fig. 2. An SDL model structure and the structure of the generated C-code from the
model

of the name " setup". This naming scheme allows discrimination between files
built for the container agents and files comprising code for the active agents.

For the active SDL agents, whose behavior is defined by the state graph, the
code file will include a number of C functions generated to implement the agent
flow diagram. The file name is constructed from the agent name and its unique
identifier.

Additional C and H files built for the agent entity will include the agent name,
its unique identifier, and an additional name part specifying the functionality
of the code in the generated software system, such as references, data types
definitions, operator functions.

The hierarchy of the directories and the naming scheme allow an easy and
convenient access to the units of the generated code and mapping of the gen-
erated code to the constructs of the source SDL specification. The hierarchy
of directories of the generated code is congruent to the hierarchy of the SDL
specification as illustrated in the example in fig. 2.

Each file that contains executable code includes references to the data type
and signal definition files which are generated for the SDL entities encompassing
the SDL entity for the code of concern. This ensures the correct scope for signals
and data types in the generated C code.

2.3 Structural Entities and Software Setup Functions

SDL structural entities such as system and block are actually containers that
define visibility scope of the enclosed entities, e.g. procedures, signals and data
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types and the context in which processes are enclosed (blocks). SDL-92 does
not define any dynamic semantics for system or block entities. These entities
are static. Nevertheless, the generated C code modules that correspond to the
system or block entities are actively involved in the setup and initialization
that eventually launch process instances contained in these entities. The system
setup function includes calls to the Kernel API functions. The implementation
of these API functions depends on the Operating System. Kernel API functions
serve as an interface to the specific Operating System and adapt data of the
generated code to the OS standard data structures needed to implement SDL
Finite State Machine (FSM) as a task or as a thread, depending on the specific
OS architecture. The realization of the inter-process signaling and timers also
depends on the specific OS and demands involvement of the Kernel API functions
to link the generated code to the OS. The Kernel implementation may substitute
the OS functionality in cases when no OS is used on the target microprocessor.

2.4 Process Data Space

The process instance is a dynamic object that may be created and terminated
during the program execution. Its status is changing from time to time as a result
of inter-process signal exchange. Code generated for a process instance contains
two types of variables: implicit variables, generated for the realization of the
process FSM and explicit variables, generated from variables explicitly declared
in the process diagram. When created, memory is allocated for each process
instance. The amount of allocated memory depends on the size and number of
variables defined in the process diagram. When the process terminates, then the
allocated memory is freed. The process instance identifier (Pid) serves as a key to
the process data space. The functions that implement the process FSM receive a
pointer to the process data space as a parameter when they are activated by the
Operating System via the Kernel API interface functions. The implicit variables
include Process Id, FSM state, etc.

2.5 Process Finite State Machine Implementation

For each SDL process specification four C functions are generated: process cre-
ation, process initialization, process FSM, and process deletion.

The Process Creation function is called either by the Block Setup function
generated for the enclosing block diagram or by the code generated for the par-
ent process. The Process Creation function takes as a parameter, the memory
allocation for its data space, and a Process Id from the Kernel API. The Process
Creation function starts a task or thread for the FSM function and issues the
Process Initialization message to the created task / thread. The Process Cre-
ation function gets a value of the parent Process ID as a parameter from the
calling entity. The Process Creation function returns a Process ID assigned to
the created instance.

The Process Initialization function is called on the reception of the message
issued by the Process Creation function. This message will be the first event
received by the Process FSM function in the span of its existence. Actually,
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Fig. 3. Part of an SDL process graph and the corresponding generated code for this
construct

Process Initialization is an implicit state of the process. It contains code cor-
responding to the sequence of actions defined in the initial transition from the
"start" symbol to the first state symbol of the process. The Process Initialization
Function gets a pointer to the process instance data space as a parameter.

The Process Deletion function includes a call to the Kernel API functions to
delete the task or the thread that was launched for the process execution and
to free the data space allocated to the process instance. The Process Deletion
function gets a pointer to the process instance data space as a parameter.

The Process FSM function can be easily mapped to the SDL process diagram
from which the C code is derived. The bulk of this function consists of a C switch
case construct reproducing the SDL process state machine. The Process FSM
function gets a pointer to the process instance data space as a parameter. The
function returns a value that may be used by the Kernel API. The returned value
notifies if the incoming signal was accepted and processed or if it was saved or
discarded (not handled in the receiving state).

In fig. 3 an example of the code generated for part of a process graph is
illustrated. The TIMER signal T Monitor and the signal DetectedSync that can
both be handled from the state Find Sync, and introduce two separated entries
in the generated code. The variable is rejected signal is used to signal to the
calling entity that an unexpected signal was received in the specified state.

3 SDL Procedure Finite State Machine Implementation

A procedure that includes states is an FSM driven by inter-processor signals or
by timers. A procedures that does not include states is handled as a procedure
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with its FSM reduced to one initial state. Kernel API functions provide calling
to the Procedure FSM function on signal reception by the process that has called
to the procedure from within its scope. Both stateless and FSM procedures are
recursive. No global or static variable is generated for procedures. API functions
provide an access to the task identifier (VxWorks) and the thread data and thus
obtain signal reception points for the FSM procedures. The generated code is
independent of the specific implementation of the signal exchange.

Three C functions are generated for an SDL procedure specification:

– Main Procedure function – called from within the body of a process, service
or other procedure.

– Procedure Initialization – called from within the body of the procedure itself.
– Procedure FSM – created only when the procedure contains states.

Unlike processes and services, procedures are not provided with their own
data space via the "malloc" function. Procedure data space is realized as a local
variable (structure) in the Main Procedure function. The Initialization and FSM
procedure gets a pointer to the data space as a parameter when called.

The call to the Main Procedure function is generated to match corresponding
SDL actions, a procedure call in a task symbol or a procedure call action. The
function contains definition of local variables and series of calls to the Procedure
Initialization function and to the Procedure FSM function (when it exists). The
Procedure Initialization function is called by the Main Procedure function and
it takes a pointer to the procedure data space as a parameter. The Procedure
FSM function is similar to FSM functions that are generated for processes and
services.

3.1 Transition Functions Triggered by the Signal Reception

For each sequence of actions performed on the signal reception by the FSM a
special function is built. It means that a function will be generated for every
combination of the input signal and the state that may receive this particular
signal. The function is called when the signal is received by the process that
resides in the state corresponding to the unique combination described above.

Signaling. A structure type definition construct is generated for each SDL sig-
nal. The generated code is placed in the include H file and the structure type
definition will be accessible for all objects that correspond to the SDL objects
included in the scope of the diagram containing the signal definition.

Each signal structure includes at least the following 4 fields:

– Signal ID. This code is unique and serves as a signal identifier.
– Source Process Identifier. Process ID of the function that issues the signal.
– Destination Process Identifier.
– Result of Send Signal Transaction.

The signal structure may include additional fields to carry the data from the
sender process to the receiver process. Generated structures serve as parameters
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for the Kernel API functions that provide support for the inter-process signal-
ing. The Kernel activates an FSM function of the receiving process using the
Destination Process Identifier. The pointer to the input signal data is set by the
Kernel and stored in the process data space.

Timers. The header of timer type definition structures is similar to the header
of regular signal structures described in the previous paragraph except one ad-
ditional field - timeout duration field that sets a time to expire. On the timer
expiration a signal will be issued. All operations that are defined for the timers
are performed by the Kernel functions: Set timer, Reset timer, and Check if
timer is active.

Time variables are assigned through API functions, which are OS dependent.
So the value of the SDL time tick is not defined in the generated code but in the
API code developed in the context of the specific OS.

3.2 Data Types

Most of the basic SDL data types are easily translated to similar restricted C
data types as shown in Table 1.

SDL operators defined for these data types coincide with C operators defined
for the matching C data types. C code that is generated from SDL expressions
is entirely transparent because the data operation symbols are identical in both
of the languages.

The C code is generated for SDL “Charstring’’, “Array” generator, “String”
generator and user defined data types defined by the SDL Newtype construct. In
C++ these data types may be more easily matched by the classes that include
operator functions retaining the same SDL operator symbols. However, for the
C code generation it is not a viable task to reach such similarity between the
source SDL code and the generated C code.

The problem is solved in the following way:

– For each SDL data type that has no match in the C data types, a structure
type definition is created. The structure may include members of another
SDL data type.

– Variables of such SDL data types are accessed via a pointer to memory
allocated for the variable. The memory is allocated by the variable create

Table 1. SDL basic data types and their corresponding C data types as implemented
in SLIPPER

SDL data type C data type

Integer Int

Character Char

Natural unsigned int

Boolean C enumeration type

Pid unsigned int

Real Float
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function generated for the SDL data type. Create variable function returns a
pointer to the variable that will be used in all operator functions generated
for the SDL data type.

– For each operator defined for the SDL data type a function is generated.
This function returns a value of the type defined by the operator. Parame-
ters of the operator function conform to the members of the SDL operator
expression. SDL operator expressions are substituted by the function calls
in the generated code.

C structure data types and references to the data type operator functions
are included into the H file that is placed in the directory built for the SDL
diagram in the scope of which the data type is defined. A data type container C
file that comprises the operator functions described above is placed in the same
directory. Data type definitions are accessible for each function generated for
agents included in the scope of the diagram in the body of which the data type
is declared.

SLIPPER imposes some restrictions for basic types such as Integer and Real.
Maximal value of the C "int" variables depends on the compiler that is always
oriented to the specific processor. The size of the processor word (2 bytes, 4
bytes and more) defines maximal value of the int variables. But the user may
define Newtype data types and necessary operators when there is a need to work
with very large numbers. Conceptually unbounded SDL variables are bounded
by the realities of the target platform.

ASN.1 Data. The principles of the code generation developed for SDL data
types (including SDL NEWTYPE specifications) have been applied to the C
code generation for the ASN.1 data types and variables.

The following ASN.1 types are supported:

– Sequence
– Sequenceof
– Choice
– Bit
– Bitstring
– Octet
– Octetstring
– Character String

Code generation for ASN.1 Sequence variables is similar to SDL Struct data
type implementation, but it necessarily includes some additional features to sup-
port constructs such as Optional Fields. For each Optional Field an additional
structure member is generated, a BOOLEAN field <variable>present. This field
is set TRUE when the Optional Field is assigned a value.

The SDL Sequenceof data types maps to the array data types in the C
language. The Sequenceof data type implementation is similar to implementation
of the String data type.
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Fig. 4. An ASN.1 struct definition and the corresponding generated C-code data type
definitions

For the Choice data type corresponding C union type definitions are gen-
erated. Implementation of ASN.1 Choice variables is obtained by a structure
that includes present field and the union C construct. The name “present” shall
not be used as a name of a union member. Cinderella SDL creates an implicit
Enumerated data type that provides unique identifiers for the Choice fields.
SLIPPER generates identifier names based on this implicit Enumerated data
type generated particularly for the specific Choice data type.

ASN.1 Character String is treated as the SDL Charstring type. The function
set that provides implementation of operations on SDL Charstring variables
serves also to support ASN.1 Character string data type.

ASN.1 Bit variables are implemented in the generated code as unsigned
char C variables. When a Bit variable is set to 0 then the value of the generated
C variable is 0 and if the Bit variable is set to 1 then the value of the generated
C variable is 1.

SLIPPER creates a special structure for each Bitstring and allocates a data
space to store the unsigned char array corresponding to the Bitstring variable.
The structure type definition is included into the standard SLIPPER include
files. The structure contains 2 fields: bitstring size and a pointer to the Bitstring
data space. SLIPPER standard libraries include a set of functions to back the
Bitstring C realization.

A C unsigned char variable matches an ASN.1 Octet variable in the output
code.

SLIPPER includes special library functions to support the Octetstring oper-
ations. The structure corresponding to the Octetstring variable is defined in the
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SLIPPER standard include files and is similar to the Bitstring implementation
structure already described.

In fig. 4 a Layer 3 PDU data type is defined in ASN.1 in the DMR SDL
model and the corresponding generated C code are shown. As can be seen there
is a clear correspondence between the ASN.1 Struct data type definition and
the generated C code. Note however, that for unnamed subrange data type
definitions (such as “Integer(0..255)”) SLIPPER generates a unique data type
name (“sort220” in this case). In addition to the generated data type definition,
functions to perform operations on the data type are generated such as structure
assignment functions.

4 Simulation of Generated Code

The major component of the simulation code provided by the SLIPPER package
is the SLIPPER KERNEL software library. The library includes a number of
the system API functions supporting the process execution, the signal exchange
between the processes, the timers and the simulation session trace. The references
to the kernel functions are included into the SLIPPER System include files.

Kernel SW is initialized in the very beginning of the simulation session. Dur-
ing the Kernel initialization the following actions will be performed:

– Pid space allocation
– Process event handles are initialized.

A process is created by a call to the function:

Pid scgK processRegistration(ST SCG PROC HDR * ptr process data)

This function gets a Pid that coincides with the number of the thread run-
ning the process instance. Afterwards, memory is allocated to the process signal
queue and to the process data space that comprises the explicit process vari-
ables (defined in the SDL specification) and the implicit variables needed for the
support of the process state machine. The allocated memory and the Pid value
will be freed on the Process Deletion request. Deletion is performed by the call
to the API function void scgK processDelete(pid Pid). Implementation of
the API functions is dependent on the OS. For example, a reasonable solution
for the Pid definition is to use the task identifier value returned by VxWorks
when the task is created. Processes will be managed by the task under VxWorks
and by the thread under Windows. A VxWorks user will be obliged to define
task priorities while it is not required for the SW evaluation under Windows.
Nevertheless, there is no need for OS specific API functions.
Signals are sent via API function:

STATUS scgK sendSignal(ST SGN HDR * ptr signal,
unsigned int size signal)
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and save signal operation is obtained via API function:

STATUS scgK saveSignal(ST SCG PROC HDR * ptr process data)

Signal send or save operations should be implemented as operations on the signal
queues for the VxWorks OS. SLIPPER simulation uses event handlers to wake
the thread in the simulation kernel code. Under VxWorks it will be achieved
using signal queues and corresponding signal queue functions.

Also timer functions are OS dependent. Simulation timers are based on 100
ms time sample cycles. That is satisfactory enough for the simulation but it may
not suit all the Real Time applications. Nevertheless, simulation timer functions
fully implement basic principles of the Timer management.

The code necessary to enable simulation of the generated system implemen-
tation is placed in two separate directories, <system name> kernel and <system
name> simulation. These directories are created at the same hierarchy level as
the system directory. The directory <system name> kernel includes two C files:
<system name> kernel.c and <system name> kernel data.c.

<system name> kernel.c module includes references to the thread functions
run by the kernel. The minimal number of thread functions is defined as a sum
of maximal number of process instances defined by the SDL specification. The
number of the thread functions, generated for the process with the unlimited
maximal number of instances, must not exceed 128. The kernel calls a thread
function when a signal is sent to a process. <system name> kernel data.c module
includes an array of Process Identifier structures comprised of the unique pro-
cess identifier and an index of the first registered instance. The kernel uses this
information to manage the process instances.

The simulation code is saved in the directory <system name> simulation,
where two C files are generated:

<system name> simulation.c and <system name> simulation data.c.
The <system name> simulation data.c file contains the list of external signal
names, and names and identifiers of the process states. These lists are used
for signal and FSM state tracing during simulation and for the external sig-
nals menu generated for the purposes of the software simulation. The <system
name> simulation.c file includes menu routine (run within a separate thread).
The menu routine allows choosing which external signal should be sent to the
simulated system. If there are data parameters carried by the signal the addi-
tional menu routine will be generated for each of the signal parameters.

5 Using MSC Diagrams for the Tracing of Simulation

The user may select the MSC Trace option from the SLIPPER option dialog
box to generate code including MSC trace functions to produce MSC diagrams
for the documentation and verification of the system simulation sessions. The
output MSC diagrams present signals sent and received by the processes, process
states and timer set/reset operations. The diagrams are built by the Cinderella
MSC editor whose API functions are used by the MSC trace functions.
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Fig. 5. A simulation MSC trace illustrating a successful DMR MS request for trans-
mission

Figure 5 is an example of a successful channel access scenario for a direct mode
DMR Mobile Station (MS) when initiating a transmission. The MSC diagram
is the result of a simulation of the code generated from the SDL model of an
MS channel access procedure. MSC diagrams generated by simulation from the
code may be used to validate that the system requirements specified in MSC
diagrams are preserved in the transformation to target code.

6 Conclusion

We have illustrated how the SLIPPER C code generator supports the software
developer in the further integration of the generated code and how the SLIPPER
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code linked with other components in the Cinderella tool set can improve the
development process. We have also shown how the linking of the SLIPPER kernel
and generated code with the Cinderella MSC may also be useful for validation
of system requirements.

The SLIPPER code generator is a first release of the tool and further exten-
sions are planned to support software development processes based on automatic
code generation from SDL. This, among other features, will include support for
adding user defined C-code in the SDL model that will be preserved during code
generation.
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Abstract. Ubiquitous computing and communications services are the
focus of intense current research and development. These systems are es-
sentially asynchronous reactive systems of independent agents. However,
there is little evidence of recent use of visual formalisms like SDL in their
development. This represents a challenge and an opportunity.

1 Introduction

Recent developments in sensing, communication, and software have brought vi-
sions of intelligent, context-sensitive buildings, roads, vehicles, and even cloth-
ing tantalizingly close. Research in pervasive and ubiquitous computing is
intense [1, 2, 3], prototypes have been demonstrated [4], and ‘the disappearing
computer’ is close to full realization [5].

At the heart of these visions lie systems of intelligent, reactive agents that
respond to sensor data, and communicate with each other in an asynchronous
way to achieve coordinated results. Development of asynchronous reactive sys-
tems is non-trivial, and modeling and simulation are critical to providing ev-
idence of their feasibility and reliability [6]. Indeed, it is reasonable to say
that reactive systems is one area where the model driven architecture [7] is
SDL [8, 9, 10], which when combined with UML [11, 12, 13] using the SDL UML
profile [14, 15, 16] provides a basis for robust model-driven development of ubiq-
uitous systems.

However, despite the availability of formalisms and automatic support for
engineering systems of reactive agents, both the literature and anecdotal evi-
dence suggest that ad-hoc development is the norm in ubiquitous and pervasive
computing.

Examples illustrating recent ubiquitous prototypes are briefly reviewed be-
low. Common themes, requirements and solutions are explored, and the merits
of SDL-2000 for developing these new kinds of system are discussed. Challenges
are summarized, and opportunities identified.

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 224–233, 2005.
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2 Ubiquitous Systems and Reactive Behavior: Some
Examples

Evolution of SDL is driven by the need to model new kinds of communications
and computing systems. Such examples motivate and provide a basis for evalu-
ating new SDL revisions [17].

The following sections briefly review a few of the many ubiquitous, context-
aware, reactive systems to be found in the literature, as well as technologies to
support them. These systems and technologies reveal key themes to be addressed
by modeling and simulation formalisms.

2.1 IST Project ParcelCall

ParcelCall developed and demonstrated real time tracking and tracing in trans-
port and logistics applications. Active tags equipped with sensors and radios
supplied real time information about the status and location of goods via wap-
enabled mobile telephones and ordinary web browsers. Trials in a live environ-
ment demonstrated the feasibility of the approach to tracking goods on journeys
across several European countries [18].

Modelling proved challenging, and limitations of the UML for this kind of
modeling work were identified [19].

2.2 Context-Aware Computing in Hospital Work

Well researched designs for a context-aware pill container and a context-aware
hospital bed were reported by Bardram [20]. The context-aware hospital bed
has an integrated computer and display, as well as sensors that can identify the
patient, recognize when a nurse is attending to the patient. It can be used by
the patient for internet access and television, and by clinicians for access to the
patient’s records.

The work yielded useful knowledge about the nature and uses of context
awareness, as well as an awareness infrastructure and an applications program-
ming interface.

2.3 Resource Aware Visualization Environment

A resource aware visualization environment (RAVE) [21] is one of the projects of
the Welsh e-Science Centre [22] RAVE is currently investigating the use of grid
technology (Globus 3 [23]) and agents implemented in JavaTM to enable collab-
orative visualization on a variety of platforms, from fully immersive platforms
through PCs and even PDAs. It allows clients to share rendering services, and
rendering services to share data services, with delivery of appropriate graphical
representation depending on available resources.

2.4 System Development for Interactive Light Control (SILICON)

System development for interactive light control (SILICON) [4] concerns a build-
ing with offices, a hallway and several installations. The offices have light groups
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and sun blinds that can be controlled by switches. The hall lights can be con-
trolled by switches, and are also automatically triggered by a motion sensor.

Starting from requirements for a distributed lighting system [24], SILICON
went on to implement and demonstrate a physical model [4]. Development fol-
lowed a model driven approach using an existing SDL toolset enhanced by a
specialist tool, APIgen, that generated interfaces for a variety of communication
technologies.

2.5 EgoSpaces, Supporting Coordination Between Agents

EgoSpaces [25] supports coordination between agents operating in mobile and
ad-hoc environments. This technology supports ubiquitous applications by al-
lowing them to control the data to be included in their operating contexts.

EgoSpaces applications make use of views, reminiscent of views on a database,
but with the ability to update views dynamically and to react to the presence
of data, derived for example, from a sensor or by way of a signal from another
agent. This emphasis on management of potentially large amounts of sensor data
contrasts with the large body of literature which focuses on the behavioral and
methodological aspects of reactive systems.

3 Key Themes and Their Implications for Specification
and Modeling

The above examples share common elements of autonomy, reactivity, context
awareness, and structure. Requirements implied by these characteristics, and
the extent to which SDL meets those requirements, are explored below.

3.1 Reactive Systems of Autonomous Agents

Reactive systems are driven by external events and conditions [6]. They allow
for intermediate observation, and not merely observation at start-up and termi-
nation [26]. Their complexity stems from the patterns of triggers and reactions
within the system, and from the concurrency and timing issues that result from
their responsiveness to events. Further challenges are posed when agents form
ad-hoc networks in an environment that is itself subject to change.

Complex patterns of reactions can be understood and controlled by modeling
and simulation. The behavior of individual agents is described using executable
visual formalisms like SDL diagrams [8] or statecharts [6, 11] for behavior of
individual agents or objects, while Message Sequence Charts [27] and sequence
diagrams [11] trace inter-object behavior.

Timing issues and scheduling constraints are the subject of current
research [28, 29]. Further work is needed to solve these problems, but formalisms
like SDL and MSC with appropriate tool support represent a clear improvement
over the ad-hoc approaches currently prevalent in ubiquitous computing.

SDL-2000 allows specification of agent types that can be instantiated and
destroyed, and whose instances have autonomous behavior defined by state ma-
chines. To this extent, dynamicity and autonomy are supported. However, an
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SDL system as a whole is statically defined, as is the pattern of events and
triggers that can be generated and recognized. This limits modeling of context
awareness.

3.2 Context Awareness and Context Limitation

The behavior of a ubiquitous service is triggered by events or signals iden-
tified by its constituent agents from the physical or logical context in which
those agents find themselves. In the simplest case, an active sensor broadcasts
signals that can be picked up by any agent within range. A combination of
agent state, physical location and logical connectivity together determine event
handling.

For instance, the context-aware hospital bed [20] responds to the approach
of a nurse by enabling automatic login, while the active tags in ParcelCall [18],
sense the location of packages as well as the temperature, humidity and other
characteristics of their container.

As well as responding to ambient signals, some agents actively seek out char-
acteristics of their environment. For example, RAVE [21] discovers and responds
to remote services as well as reacting to the characteristics of local display facil-
ities.

Context limitation entails restricting the ambient signals recognized or ac-
cepted by an agent. This is necessary to protect agents from data overload, and
to ensure ambient signals only reach their intended recipients. For example, pa-
tient privacy must be maintained despite ambient availability of patient data in
the case of of the context-aware hospital bed [20], and protection of agents from
data overload motivated much of the EgoSpaces [25] development.

SDL is explicitly intended for modeling agents that generate and respond to
signals. This means that agents can respond to their modeled environment and
can also query their environment.

Signal sets on SDL gates allow static specification of the interface between an
agent and its context, and thus provide some control over context
awareness [8, 10]. The gates on an agent type specify exactly the signals that
agent instances can accept, and thus the kind and degree of context awareness
the agent has. This also ensures that only intended recipients can act on signals.

However, as a static definition, the signal set on an SDL gate not only pre-
scribes the behavior of an agent type, but also the behavior of the environment
in that the environment must generate signals accepted by the agent and must
accept signals generated by the agent.

This contradicts the idea of an autonomous agent which is capable of ex-
ploring an unknown environment, and dynamically reconfiguring the signals
it accepts and its own responses to those signals in the context of the new
environment.

3.3 Event Sharing

Ambient and broadcast communications imply event sharing and the potential
for conflict in an environment where multiple agents can react to an event.
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Intuitively, if an event is discernible in an environment, then every agent that
can respond to the event should be able to sense the event. This is reflected in
the semantics of Harel statecharts as described in [6, 30], where every transition
that can be triggered by an event is triggered when the event occurs.

However, this is not the default semantics for UML 2.0 [11, 12] statecharts
(although it is a semantic variation point). There, unless otherwise specified, if
several behaviors contend for an event, then only one of those actions is taken [11]
and the event is consumed.

In SDL-2000 [8] also, in the case of conflicting transitions, which are triggered
by the same event, only one transition is actually fired by the event. SDL-2000
differs from UML 2.0 statecharts in that the transition to be fired is uniquely
determined; that is, it is the innermost transition in a composite state that
accepts the event, where state partitions in a state aggregation are required to
have disjoint signal sets.

Both kinds of semantics have their merits. The statechart semantics of [6, 30]
provide for the kind of concurrency that would intuitively be expected where
independent agents all recognize a particular event in a given location. For ex-
ample, in a hospital scenario it could well be essential that several different
agents all responded to a patient event.

On the other hand, although further removed from this intuitive view, the
deterministic semantics of SDL-2000 leads to very robust solutions to this kind of
problem. It is reasonable to assume that the different agents that must respond
to a patient event must respond in a coordinated fashion, and so it makes sense
to combine those agents in a state aggregation, whose containing agent reacts to
the initial patient event by controlled triggering of the state partitions. This is
analogous to an approach recommended for UML 2.0 sequence diagrams in [31].

The default semantics of UML 2.0 statecharts exhibits a worrying level of
non-determinacy for situations like the patient-event scenario. However, it is
absolutely appropriate for describing a single-queuing mechanism for allocating
tasks to duplicate resources (such as printers), any one of which could handle
the event.

3.4 Composition and Structure

Composition and structure are used to model agent combination in part-whole
relationships, and also agent cooperation to achieve particular results, in possibly
temporary collaborations. Compositions can be static, existing throughout the
life of a system, or dynamic, allowing agents to join and leave. They can also be
physical or logical.

For example, in ParcelCall [18], a consignment can be composed of several
logically related elements, whose active tags could, in principle, communicate
with each other to provide coordinated data about the status and location of the
composite package. Alternatively, the consignment might consist of physically
nested packages.

SDL 2000 supports composite types, which means that structured agents
can be modeled. It also supports dynamic communications structures by allow-
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ing creation and destruction of agent instances [8]. This has a well-defined and
robust semantics; containing agents remain in a stopping condition until all their
contained agents have terminated, so no agent is left without a container.

4 Model Driven Development with SDL

Model driven architecture (MDA) has been promoted [7] as a way to raise the
level of abstraction at which software engineers work, and to increase automa-
tion of software development processes. Model driven development entails using
well-defined models to specify systems with varying levels of dependency on pro-
gramming languages and platforms. Models are managed and transformed with
the help of tools that preserve consistency between the models.

The term MDA as used in [7] applies to software and systems development
using models whose consistency relationships are defined in terms of the OMG
meta-object facility (MOF) [32].

However, the use of fully automated visual formalisms, comprising systems
of models in verifiable relationships was fully realized in the area of reactive
systems long before UML 2.0 and MDA existed. SDL was formally defined in
the 1980’s, and sophisticated tools to support modeling, simulation and code
generation have been available for more than 20 years. A textbook detailing
an object-oriented, model-driven approach to development of real-time systems
using SDL was published in the early 1990’s[33]. Similarly tools to support model
based development using statecharts have been in use for almost as long.

It is therefore hardly surprising that some of the most complete examples of
model driven architecture have emerged from the SDL-UML and TINA commu-
nities [4, 34, 35, 36]. These studies go far beyond generation from object models of
instance variable declarations with associated setters and getters to simulation,
testing and generation of fully working systems.

5 Challenges

Although SDL has long proved to be an excellent formalism for specifying, mod-
eling and developing reactive systems [33, 37], and despite the recent explosion
of interest in ubiquitous services, there is little evidence of recent use of SDL in
creating or prototyping these services. Literature searches yield numerous arti-
cles on ubiquitous computing, and on state machine modeling, but very few in
which the two are combined1.

Some technical challenges to the use of SDL are listed below.

– Tool support: Although some excellent tools are available, still more are
needed, but SDL 2000 presents substantial technical challenges to tool de-
velopers. This, of course reflects the essential tension between demands for

1 Searches were conducted using ISI Web of Science, Citeseer, OCLC FirstSearch, the
ACM digital library and SpringerLink.
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language expressiveness and implementability. Target language constraints
may discourage some tool users, while costs deter others.

– Timing and scheduling: The problems are a subject of ongoing research,
and their solution will enhance the attractiveness of the SDL family of for-
malisms.

– Signal sets on gates: These prescribe behavior of agents in a static way,
and make it difficult to model agents that adapt to new environments; more-
over, they also prescribe the behavior of the environment itself.

– Event sharing: Between independent agents, where multiple agents all re-
spond to an ambient event, event sharing cannot be modeled without adding
clutter to an SDL specification.

The greatest non-technical challenge concerns the general level of awareness
of SDL within the ubiquitous computing community. Although SDL has kept
pace with or outstripped advancements in ubiquitous computing and in model-
driven development, demonstrations showing this do not make for novel research.
This means that new players in ubiquitous computing remain largely unaware
of the benefits of SDL 2000 with its agent-oriented features. This problem is
compounded by the use of different vocabularies to describe the same concepts
in the state machine modeling and ubiquitous computing communities. If SDL
is to become a formalism of choice in that community, new demonstrations of
its benefits will need to be made available.

6 Conclusion

Ubiquitous systems involving elements of communication and computing are
rapidly becoming a fact of modern life. These systems are composed of ad-
hoc combinations of autonomous agents, which exhibit asynchronous reactive
behavior, responding to various environmental factors, including the presence or
absence of other agents.

Best practice in development of reactive systems indicates that visual for-
malisms, involving diagrammatic yet semantically rigorous diagrams, should be
used for specifying these systems. Amongst the many established and emerging
visual formalisms, SDL and MSC are extremely well positioned to serve as the
modeling formalisms of choice for development of ubiquitous systems. As well
as possessing technical strengths, the manner in which their evolution is agreed
amongst interested parties serves to ensure that independently developed mod-
els can readily be interchanged and combined, and that engineers’ skills are
applicable in a range of domains.

The emergence of the SDL UML profile [15] together with supporting tools to
facilitate simulation, play-in/play-out, and model transformation serve to com-
bine the advantages of UML’s large and diverse user base with the semantic
strength of SDL.

However, technical and non-technical challenges remain. The principal non-
technical challenge it to raise awareness of the benefits of SDL and particularly
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of SDL 2000 within the rapidly growing ubiquitous/pervasive computing com-
munity. Technical challenges include:

– provision of further tool support (such as an extensible toolkit aimed at users
with limited budgets);

– continued research into timing and scheduling problems (few of which are
adequately addressed in current ubiquitous prototypes);

– development of intuitive models of event sharing in the presence of ambient
signals;

– development of dynamically reconfigurable gates (so that agents can adapt
their behavior to new environments without needing to carry information
about all possible environments).

These challenges are formidable, but the rising enthusiasm for ubiquitous
computing, coupled with the discovery by the wider IT community of model
driven architecture, presents an excellent opportunity for SDL and its related
formalisms.
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Abstract. This paper presents ArchiTRIO (Architectural TRIO), a new
temporal logic language which combines a subset of the UML notation
with a precise formal semantics inspired from the authors’ experiences.
ArchiTRIO allows developers to use standard UML 2.0 notation to de-
scribe non-critical aspects of systems, but it also offers a complementary
formal notation, fully integrated with the UML one, to represent those
system aspects that require precise modeling.

1 Introduction

Nowadays, UML is the de facto standard for system modeling in industrial prac-
tice. Its popularity derives from a number of factors such as simplicity, ease of
use and a certain degree of intuitiveness and flexibility in the notation, which
reduce the effort needed to be able to write UML models to a minimum. UML is
evolving, and its 2.0 incarnation introduces some new constructs (such as com-
ponent, connector, port) crucial for describing system architectures that were
previously missing [11]. Alas, as with the previous versions, UML’s lack of for-
mality hampers its applicability to critical systems, where precise and rigorous
designs are of the utmost importance for the correct development of the ap-
plication. To overcome these deficiencies, a number of approaches use existing
formal languages to give some chosen UML constructs, typically statecharts and
sequence diagrams, a precise semantics (see [8, 9]).

Our experience with the TRIO and TC (TRIO-CORBA) languages [2] led us
to develop the ArchiTRIO language, which ArchiTRIO follows a lightweight ap-
proach to the problem of formal modeling [17] to better suits industrial practices.
ArchiTRIO is based upon a few selected UML 2.0 constructs especially suited
for describing architectures, it gives them a formal meaning, and precisely de-
fines their composition. It differs from the aforementioned formal approaches to
UML in that it exploits a logic-based approach, which (given a UML 2.0 com-
posite structure diagram [14]) allows one to define at a high abstraction level
the dynamic properties (including possible temporal constraints) of the system
components and their mutual interactions. ArchiTRIO adds expressive power

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 234–246, 2005.
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to UML diagrams, rather than replacing or modifying any of them. Therefore
a user, who at first does not need full-blown ArchiTRIO, can start by drawing
bare UML composite structure diagrams. ArchiTRIO-specific notation can be
introduced later, when the need arises for clarity and precision (especially for
what concerns critical system temporal constraints).

Given the formal nature of the language, from an ArchiTRIO model a number
of developments are possible:

– an obvious one is to apply formal verification techniques to check the correct-
ness of the design against high level requirements (similar to the experience
of TC [16]);

– another is to move from a high-level architectural design to a lower level
closer to implementation – we envision the possibility of translating
ArchiTRIO formulas into operational notations such as Statecharts or SDL
diagrams [1, 12, 18].

The ultimate goal of our research, in fact, is to support the full life cycle by
allowing the developer to move smoothly and safely from the high phases of
requirements analysis and specification down to final implementation and verifi-
cation. Thus, an operational version of architectural system design can be further
refined into an executable implementation possibly exploiting a (semi)automatic
code generator such as [18].

To provide tool support to ArchiTRIO, a plugin of the TRIO-based TRI-
DENT integrated development platform is currently being developed. To fully
support the above methodological approach, TRIDENT will allow the user to
import a “pure UML document” produced through any UML tool and to aug-
ment it with the appropriate level of formality expressed in terms of ArchiTRIO.

This paper is structured as follows: section 2 presents the ArchiTRIO ap-
proach to system development, which combines informal UML models with pre-
cise temporal logic formulas; section 3 presents the ArchiTRIO language through
a running example, and briefly hints at its formal semantics; section 4 describes
the tool being developed to support the aforementioned language and method-
ology; finally, section 5 presents a selection of related works and draws some
conclusions.

2 Overview of the Approach

In this section, we sketch our approach, along with a simple running example: an
access control system for a building divided into areas having different security
levels. Our methodological trip starts from the high level system description,
written in natural language and pure UML, and goes through the architectural
design, by means of the ArchiTRIO language. This section stops right before
actually presenting ArchiTRIO concepts – this is the purpose of section 3.

Our aim is to offer a methodology and tools that, starting from standard
UML, may include a formally sound temporal logic-based technique. Ideally,
our methodology follows the following route: a user would start by drawing
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a UML diagram (at present, we take into account class diagrams, and leave
behavioral diagrams out of the picture), and then refine/specialize/complete it
until a complete specification/architecture is obtained, consisting of Composite
Structure diagrams and their ArchiTRIO semantics, possibly augmented with
exclusively ArchiTRIO concepts, on which formal verification can be carried out.

Let us now consider the example system. The Access Control System is used
in one or more corporate buildings having three different security levels: low,
medium, and high. The building may contain zero or more areas of a given
security level. The access control is enforced through essentially two kinds of
entities: a local mechanism based on the concept of security gate, and a central
control connected to a user database.

As in current UML-based industrial practice, we start by drawing a class dia-
gram, in which we depict the relations among these higher-level entities (see fig. 1).

Fig. 1. Access Control System: the high-level class diagram

The diagram in fig. 1 depicts a CentralControl class, the main entity which
enforces the prescribed security policy for user access; UserDB – a database con-
taining users’ data and their actual security clearance; and three kinds of Gate
classes: SimpleGate, MediumSecurityGate, and HighSecurityGate, in charge
of managing the local access to areas with low, medium, and high security level,
respectively.

UML 2.0 introduces the useful concept of port, which is essentially an inter-
face container. In this example ports are used to define the protocols used by
the CentralControl, to get from, send data to, and manage gates. In fig. 1,
every gate has a port of type GatePort, while CentralControl has three differ-
ent ports, LowSecAutProtocol, MedSecAutProtocol, and HighSecAutProtocol
that will be used to communicate with SimpleGates, MediumSecurityGates,
and HighSecurityGates, respectively.

Moving in a top-down fashion, we now define the internal class structure of
the gates (see fig. 2). As the reader can see, the low security gate is the simplest
one, and it is depicted on the left part of the diagram. A SimpleGate is an entity
having one or more BadgeReaders (a subclass of IdRecognizer), managed by
a local controller LC SimpleGate. Communication between BadgeReader and
LC SimpleGate is based on the interface LocalControl, implemented by the
latter.
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The medium security level gates are described in the central part of the dia-
gram. A MediumSecurityGate is based on a more sophisticated IdRecognizer,
a fingerprint reader (class FingerprintsReader), and has an entry sensor (class
EntrySensor). In the typical usage scenario of a medium security gate, the user
approaches the gate and his/her fingerprints are scanned; his/her data is then
sent to the central control to be checked. If everything is ok, the gate remains
open either for a short fixed time interval, or until the entry sensor actually de-
tects the user getting in. This scenario could typically be described in UML by a
sequence diagram, not reported here. Analogously to the simple gate, a medium
security gate is supervised by a local controller, LC MedSecGate, and commu-
nication between the local controller and the sensors is based on the interface
LocalControl.

Fig. 2. Access Control System: the local-level class diagram

The most complex type of gate is the HighSecurityGate, on the right side
of fig. 2: it consists of two kinds of IdRecognizers, a FingerprintsReader and
a RetinaScanner; an EntrySensor; and a local controller LC HighSecGate. Its
behavior is basically analogous to the medium security level one, but for the
retina scanner: the access control has to check both the user’s fingerprints and
retina to open the gate.

To move towards the high-level system architecture, we have now to describe
how instances of the classes sketched in the previous diagrams are actually in-
terconnected and structured. As far as UML is concerned, the new composite
structure diagrams, a welcome addition in UML 2.0, are quite useful. Let us
consider for instance a high security gate (fig. 3).
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Fig. 3. Composite structure diagram of a high security gate

Fig. 4. The building structure: the high-level system architecture

A high security gate consists of a retina scanner (RS), a fingerprints reader
(FR), an entry sensor (ES), and a local control (LC). Every one is an instance of
the corresponding class; LC exchanges data with the sensors by implementing the
interface LocalControl, while communication with the remote central control
happens through a replicated port of type GatePort. Details of this aspect will
be provided in the next section.

Last, we consider the system high-level architecture (fig. 4): our example
building is made of a central control (CC); two low security gates (Entrance and
BackDoor); two medium security areas and their corresponding gates (AreaX
and Area44); finally, a high security area reachable through a high security gate
(Area51).

This concludes a first simple architectural description of the system, based
exclusively on UML constructs. As we said in the introduction, UML per se does
not precisely define many of the constructs we used for describing our system
here. For instance, in our brief description above, a precise definition of timeouts
management and local control behavior is nowhere to be found. More generally,
we would like to be able to precisely express a critical property and possibly to
verify it. In our example an unwanted behavior like the following should not be
possible: Alice has clearance to enter Area51 and authenticates herself at the
gate, at the same time a malicious Bob is waiting for her authentication behind
a corner nearby, trying to enter into the restricted area right behind her. On one
hand it is easy to correctly model the local control by using behavioral diagrams
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(such as statecharts or SDL). On the other hand however, stating and verifying
general properties (such as “the entry sensor must signal a single entrance after a
valid authentication, and it must occur not before k ms and not after k+n ms”)
is almost impossible if one uses pure UML, even taking into account OCL. OCL
per se has a limited aim and has been designed to express static constraints
like guards and pre-/post-conditions on operations without side-effects. We will
consider OCL and some of its proposed variants later.

It is at this point that the designer of a critical system could need something
more than plain UML to seamlessly incorporate desired properties and system
requirements into its architecture. So ArchiTRIO appears in the picture: the
designer needs a solid formal description of the used concepts (class, instance,
interface, port, operation, connection, and so on) to state something more and
more precisely about the system, well before implementing it.

3 The ArchiTRIO Language

The basic ArchiTRIO concepts mirror a subset of the elements one can find
in UML 2.0. The core of the language is the class. A class defines operations
and attributes, and can provide and require interfaces; ports are groups of re-
quired/provided interfaces, and can be used to define protocols. Classes can have
composite structures, whose parts are connected by connectors.

Next to these UML elements, however, ArchiTRIO also includes concepts
derived from temporal logic, which allow users to precisely define the behavior
of a system modeled with ArchiTRIO. In fact, every UML element featured in
ArchiTRIO is given a formal semantics in terms of the temporal logic (HOT,
Higher-Order TRIO [5]) on which ArchiTRIO is founded. This, in turn, allows
one to attach a precise meaning to the formulas describing the dynamics of the
components (taken separately or as a whole) of the system being modeled.

Let us now illustrate some of the most significant syntactic features of
ArchiTRIO through the example system shown in section 2. Section 3.1 will
briefly hint at the semantics of some of the elements shown here, without pre-
tending to be exhaustive.

The graphical representation of those concepts that are common to both
ArchiTRIO and UML is the same as in UML. However, every ArchiTRIO ele-
ment (UML-derived and logic-derived ones alike) is also given a textual represen-
tation detailing its ArchiTRIO-specific features. For example, class
LC HighSecGate introduced in fig. 2 provides interface LocalControl and has a
port of type GatePort; interface LocalControl defines two operations,
incomingData and personEntered. The corresponding textual declaration of
fig. 5 defines that, in addition to the aforementioned UML port and inter-
face, class LC HighSecGate includes three logic items, inGate, lastUser and
gate open. Item inGate is time-independent (TI, meaning that its value is con-
stant over time), and represents the identifier of the Gate to which the controller
belongs; item lastUser is time-dependent (TD, that is its value depends on the
time instant at which the item is evaluated) and models the data corresponding
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class LC HighSecGate

temporal domain: real;

provides LocalControl ...

ports:
out : GatePort; ...

items:
TI inGate : GateId;

TD lastUser : User;

state gate open;

constructors:
LC HighSecGate(GateId g) : inGate = g;

axioms:...
end

Fig. 5. Sketch of the textual declaration of class LC HighSecGate

to the user who had either his/her fingerprints or his/her retina scanned; item
gate open, instead, is a state (which means that it is true/false in intervals of
non-null duration), and models the intervals in which the gate is open. Notice
that the temporal domain clause defines that temporal variables range over real
values (that is, time is dense).

As we will show later through some examples, in addition to the logic items
explicitly declared in the class signature, an ArchiTRIO class includes a number
of built-in items, which model the most significant features of the UML elements
of the class (for example the parameters of an operation, an operation invocation,
etc.). Then, the axioms of class LC HighSecGate are formulas that predicate over
the logic items (explicitly declared or built-in) of the class to define its precise
behavior.

Axiom dataRelay shown below, for example, states that when an invoca-
tion of operation incomingData (exported through interface LocalControl) is
received by the controller and the value of the rawData parameter is pd, within
T time units in the future the controller will invoke (an instance of) operation
sendPersData (see fig. 6 for its signature) on port out, passing pd and the value
corresponding to item inGate as parameters.

vars: iD : incomingData
sPD : sendPersData
pd : PersonalData

dataRelay:
iD.inv rec(pd) ->

ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T);

In axiom dataRelay, iD and sPD are variables ranging over all possible in-
vocations of operations incomingData and sendPersData, respectively. Then,
ex out.sPD means that “there exists an invocation of operation sendPersData
(within the scope of port out) such that...”. inv rec and invoke are built-in
logic items (more precisely events, that is predicates that are true only in isolated
time instants) modeling significant events of an operation invocation; in partic-
ular, event iD.inv rec is true when invocation iD of operation incomingData
is received by the local controller; similarly, event out.sPD.invoke is true when
the controller issues invocation sPD on port out. WithinF is a temporal operator
taken from the TRIO formal language [2] (it stands for within the future). Finally,
pd is a variable of type PersonalData, where PersonalData is an ArchiTRIO
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interface AccessControl

operations:
User sendPersData(in PersonalData rawData,

in GateId gate)

raises UserNonExistentException;

enterPerson(in User user, in GateId gate)

raises UserNonExistentException;

end

interface FromAccessControl

operations:
openGate();

end

Fig. 6. Declaration of interfaces AccessControl and FromAccessControl

class, not shown here for the sake of brevity, modeling either the badge, or the
fingerprints, or the retina of a user.

As another example of an ArchiTRIO formula, let us focus on axiom
gate open Def below, which defines precisely when the controller leaves the
gate open, thus allowing a user to enter. gate open Def states that, in the cur-
rent instant, the gate is open if and only if there is another instant, within the
past Topen time units (where Topen is a system-dependent constant), in which
the controller received an invocation oG of operation openGate from port out,
and no invocation of operation personEntered has been received since (see [2]
for the precise definition of temporal operators Since and WithinP).

vars: pE :personEntered;
oG :openGate;

gate open Def:
gate open <->

Since(not ex pE(pE.inv rec, ex out.oG(out.oG.inv rec)) &
WithinP(ex out.oG(out.oG.inv rec), Topen);

Notice that as a consequence of axiom gate open Def the gate cannot stay open
longer than Topen time units if the openGate command is not refreshed (that is
received again from the central controller); in fact if, after Topen time units from
the last openGate, no person has yet entered (a personEntered command has
not been received), subformula WithinP(ex out.oG(out.oG.inv rec), Topen)
does not hold any more, thus gate open becomes false (the gate closes).

Let us now focus on the concept of port in ArchiTRIO. Syntactically, a port
is just a collection of provided and required interfaces. From a semantic point of
view, instead, a port can be used to define a protocol, intended as a combination
of invocations of operations that can be received (from a provided interface) or
issued (to a required interface). Then, an ArchiTRIO port can contain axioms
defining the corresponding protocol in terms of the involved operation invoca-
tions.

Consider, for example, port HighSecAutProtocol mentioned in fig. 1. It pro-
vides interface AccessControl, and requires one instance of interface
FromAccessControl (the details of the operations defined by the two interfaces
can be found in fig. 7).
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vars: sPD1, sPD2 : sendPersData;

oG : openGate;

openGate SC:

ac.sPD1.reply(u) & ac.sPD1.rawData = rd1 & ac.sPD1.gate = g &
ex ac.sPD2(WithinP(ac.sPD2.reply(u) &

ac.sPD2.rawData = rd2 & ac.sPD2.gate = g,

Tprot)) &
(type(rd1, Fingerprints) -> type(rd2, Retina)) &
(type(rd2, Fingerprints) -> type(rd1, Retina))

->

WithinF(ex fac.oG(fac.oG.invoke), T);

...

end

Fig. 7. Axiom openGate SC of port HighSecAutProtocol

The port defines the authentication protocol for gates that require that a user
authenticates him/herself through both a fingerprint and a retina scan. More
precisely, the two scans can occur in any order, but always within a maximum
delay one from the other for the authentication to be successful (where success
means for controller allows the user to enter by opening the gate through an
openGate command).

Figure 7 shows axiom openGate SC of port HighSecAutProtocol defining a
sufficient condition for the openGate command to be sent to the gate through
interface FromAccessControl. Formula openGate SC states that if there are
two invocations (sPD1 and sPD2) of operation sendPersData of interface
AccessControl (ac) that are completed successfully within a maximum delay
of Tprot time units one from the other, and such that

– the gate input parameter is the same for both and
– the rawData input parameter has type Fingerprints for one of them and

Retina for the other,

then operation openGate is invoked on interface FromAccessControl (fac) no
later than T time units after the instant in which the second invocation (repre-
sented in the formula by sPD1) ended.

Finally, the textual declaration of a composite ArchiTRIO class defines the
elements composing each instance of the class, and how they are connected with
each other (for example which part provides the interface required by another
part, and so on).

3.1 ArchiTRIO Semantics (Hints)

From a semantic point of view, ArchiTRIO is founded on a higher-order temporal
logic, Higher-Order TRIO (HOT for short [5]). The choice of a higher-order logic
was dictated by the need to allow an easy representation of mechanisms such as
the passing of parameters of complex types (to be precise, of parameters that
can be ArchiTRIO/UML objects).
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In HOT terms, a class is a type. An object in HOT is an instance of a class, that
is a value of a type. ArchiTRIO is based on the same concepts: an ArchiTRIO
class is a HOT class, so it defines a type; an ArchiTRIO object is an instance of
the class.
An ArchiTRIO operation also corresponds to a HOT class. All operations share
a core group of features (built-in items and behavior), which is modeled by
a HOT class Operation. This class introduces the logic items modeling the
relevant features of an operation invocation (such as the invoke, inv rec and
reply events presented above), and the axioms defining the behavior that is
common to all invocations.

A specific operation (such as incomingData) is also defined as a class. For
example, a class IncomingData defines the semantics for the corresponding op-
eration. Class IncomingData is a subtype of class Operation: in short, if a
class S is a subtype of a class P then S inherits all the elements of P, and
all axioms of P are still valid in S. Every instance i of class IncomingData
(that is every value of type IncomingData) is an invocation of the corresponding
operation.

An ArchiTRIO interface is just a HOT class exporting operations. A class
providing an interface, from a semantic point of view, is a subtype of that in-
terface. An ArchiTRIO class requiring an interface I is a HOT generic (that is
parametric) class with respect to a parameter of type I. A connection between
a provided and a required interface (like the one between modules LC and RS of
fig. 3, for example) corresponds, semantically, to a parameter instantiation (in
the case of fig. 3, the parameter of type LocalControl of module RS is instan-
tiated with object LC).

Finally, since a port is a collection of provided and required interfaces (plus a
set of axioms), an ArchiTRIO class that has a port of type P, which provides in-
terfaces PI1. . . PIn and requires interfaces RI1. . . RIm, also provides and requires
the same interfaces. In addition, a class that has a port P includes the axioms
of P.

4 Tool Support

Our experience of several decades with the TRIO language brought the construc-
tion of a long series of prototypical tools, every one with a different slight variant
of the language, and different verification or editing capabilities. From this situa-
tion came the decision of a couple of years ago to build up an industrial-strength
integrated tool for supporting our methodologies and languages.

TRIDENT (short for TRio Integrated Development EnvironmeNT ) is a tool
for the development and analysis of time-critical systems based on the TRIO
formal language. TRIDENT is implemented on the Eclipse platform [3], and is
currently being developed jointly by Politecnico di Milano and CEFRIEL.

As typical with Eclipse-based tools, TRIDENT is plugin-based, so it is by
itself an open and evolving product. The environment is still in a prototypical
stage, so many of the intended features are still incomplete.
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Some of the most notable present features of the tool are the ability to edit
complex TRIO specifications and histories (these are execution traces that may
be used as test cases), and check their mutual compatibility.

More recently, a plugin for supporting model-checking of TRIO specifica-
tions has been implemented [13]. This plugin, also called TRIO-PROMELA, is
based on the well-known model-checker SPIN, and uses a novel translation tech-
nique based on alternating automata. We intend to use this very same technique
for model-checking modular and mixed logic/operational specifications (having
components written in some automata-based notation, say for example SDL),
but this feature is not yet implemented.

As far as ArchiTRIO is concerned, currently there is an advanced-stage pro-
totypical plugin, which supports class and composite structure diagrams edit-
ing, and some of the basic ArchiTRIO characteristics. In addition, a prototype
plugin capable of partially transforming XMI files into TRIDENT objects has
been developed and should be available in the TRIDENT distribution in a short
time.

5 Related Works and Conclusions

In this paper we presented a formal language, ArchiTRIO, suitable for describing
system architectures. It combines a subset of the UML 2.0 graphical notation
with a higher-order temporal logic, which allows users to precisely express both
the structural (static) and the behavioral properties of the modeled system.
ArchiTRIO is designed to let users draw models in a subset of the usual UML
notation (to be precise, using class diagrams and the new composite structure
diagrams) and then, if and when necessary, add precise details about the behavior
of the target system using a temporal logic-based formalism.

ArchiTRIO combines UML and formal languages to provide a powerful means
to model system architecture and, as a consequence, is related to a number of
works that have appeared in the literature in recent years. Let us briefly analyze
how our work on ArchiTRIO differs from previous ones.

UML prior to version 2.0 if taken by itself is shown by [11] to lack concepts
that are necessary for modeling system architectures, and [11] proceeds to intro-
duce profiles for a pair of Architecture Description Languages (ADLs) to cover
for these deficiencies. The approach of [11] presumes that users will then use these
profiles, and the ADL-specific concepts they define, to model architectures. The
ArchiTRIO approach, instead, does not introduce any new graphical notation
to UML 2.0: the user who does not need the full expressiveness of ArchiTRIO
can still use the plain UML notation and ignore the underlying logic altogether;
the user in need of rigor and precision, on the other hand, can seamlessly intro-
duce formal definitions of the behavior of the system in his/her model, without
altering the original UML description.

How to add formality to existing UML is a widely acknowledged problem. In
this regard, a number of works in the literature have proposed an approach based
on translating UML behavioral diagrams (especially statecharts and sequence
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diagrams) into an existing formalism (see [8] or [10], and many others not listed
here for the sake of brevity), or, alternatively, into an ad-hoc model [9]. With
ArchiTRIO there is no translation into any other language; on the contrary, it
is a formal language integrated into the UML 2.0 notation, which allows one
to precisely describe both the structure and the behavior of a system, of its
components and their interactions, with particular attention to their temporal
constraints.

Indeed, UML already has an associated logic language, the Object Constraint
Language (OCL), for which temporal extensions have been proposed [4]. How-
ever, OCL, and RT-OCL in particular, is a language with limited scope, as
its intended use is mostly for expressing constraints on behavioral diagrams
such as statecharts. On the contrary, the ArchiTRIO approach is a comprehen-
sive one, which aims at supporting the whole system specification and design
process by modeling all aspects of a system architecture, both structural and
behavioral.

Finally, [7] presents an approach to the analysis of system architectures based
on a subset of UML 2.0 concepts and a formal semantics for time-annotated
statecharts. Again, with respect to this work, the scope of ArchiTRIO is wider,
as it is intended for use in the whole system design phase, from modeling to
verification. In fact, one could see the techniques presented in [7], and associated
notations, as a target model, to be obtained through a suitable method from an
ArchiTRIO design to perform subsequent verification.

This work opens the way to a variety of future developments.

– First and foremost, we will complete the development of the tool sketched
in section 4, which we plan to release for free use by both academic and
industrial communities.

– Secondly, we will investigate verification techniques (to be supported by
the tool-set mentioned above) to complement the modeling features pre-
sented in this paper. In this regard, the semantics of ArchiTRIO in terms of
HOT suggests a fairly straightforward encoding of ArchiTRIO classes into
the higher-order logic of a theorem prover such as PVS, along the lines al-
ready followed for the TRIO language [6]. Other approaches will also be
explored, for example translating ArchiTRIO classes into automata-based
formalisms (like those used in [7] for example) to exploit model checking
techniques.

– Finally, we plan on developing a method that allows one to move from the
pure logic notation of ArchiTRIO to an operational formalism closer to im-
plementation such as SDL [12] (as mentioned in section 4, techniques to
translate TRIO temporal operators into Promela communicating processes
have already been explored in [13], and many concepts of Promela can also
be found in SDL). This would open up the possibility of using existing tools
(such as [18]) to perform automatic generation of code that complies with
the properties and the behavior precisely defined by an ArchiTRIO model
(and, in particular, by the axioms contained in its classes).
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Abstract. Despite their apparent simplicity, Web applications are sur-
prisingly difficult to develop, if our aim is to build applications that
behave correctly under regular conditions as well as adverse circum-
stances like out-of-order requests and race conditions. In this paper, we
describe our experiences deriving customer-oriented acceptance tests for
Web applications by modeling the essential capabilities of such applica-
tions with Use Case Maps (UCMs). Abstract test purposes are generated
from a UCM model using scenario definitions and scenario extraction
tools. These test purposes are then converted interactively to test cases
in the FitNesse acceptance testing framework, which is popular in the
Extreme Programming (XP) community. The test cases are used to val-
idate a Web application where several typical but non-trivial bugs were
planted. Challenges in the automation of the process are also discussed.

1 Introduction

Web applications can be surprisingly difficult to develop because they need to
support a wide variety of expected usage scenarios. Moreover, we want these
applications to be robust, that is, we want them to behave correctly under unex-
pected or adverse circumstances. Due to the strict time-to-market requirements
imposed on Web development projects, modeling and testing are often consid-
ered too time-consuming and lacking significant payoff [11]. More significantly,
though, their general lack of robustness is due to the “openness” of Web appli-
cations and to concurrency issues.

Openness is most often associated with security concerns. In a recent sur-
vey [14], more than 90% of Web applications were found to be vulnerable to
common hacking attacks such as cross-site scripting, parameter tampering, and
cookie poisoning. These problems are usually caused by a failure of the Web
application to properly validate user input. However, this is but one way that
Web applications are “wide open” to unexpected use, or malicious exploitation.

Unlike in a “closed” desktop application, or even a distributed application
with a tightly controlled API, requests can be sent in any order to a Web appli-
cation. Expecting the input pattern to follow the designed navigational structure
may lead to subtle design errors in developing the Web application. For exam-
ple, a user could bookmark a page, and resubmit the request associated with it
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later. Furthermore, Web applications can be accessed by different types of clients
(browsers, robots, etc.), not just those they were designed for.

Other common errors are caused by race conditions. Web applications have
been plagued by these from the beginning. A famous example is the multi-
ple order problem caused by repeatedly clicking “Place Order” on a checkout
page. The culprit here is the delay caused by processing the payment infor-
mation, which may cause the user to think that their request has not been
received. The actual error is that the developer forgot to check (or properly
model) the state of the Web application before processing the additional order
confirmations.

In this paper we describe our experiences deriving customer-oriented accep-
tance tests for Web applications by modeling the essential capabilities of the
application as Use Case Maps (UCMs). Our hypothesis is that this scenario-
based, lightweight level of modeling is more accessible to Web developers than
heavyweight formal methods. We also try to tie in the existing methodologies
and tools used in the Web application development community. In particular,
we use the notion of acceptance tests as customer-driven tests, as defined in the
Test-Driven Development (TDD) approach [4] in Extreme Programming (XP).
Our tests run on the popular FitNesse acceptance testing framework [18].

Section 2 presents related work. In section 3 we describe the Web application
for an online store used as a case study to demonstrate our approach. A UCM
model capturing the essence of this application is presented in section 4. In
section 5, we introduce the FitNesse-oriented testing environment used for our
experiment. Test generation and results are discussed in section 6, followed by
our conclusions and an outlook on future work.

2 Related Work

Although there are many commercial tools available for testing Web applications,
their scope is often severely limited. Most of these tools are designed to assess
the compatibility of a Web application with different browsers and operating
systems, its ability to deal with large numbers of concurrent users (stress testing),
and that the application is free of dead links (link testers) [8]. However, these
tools do not provide facilities for structural and functional testing.

Recently, several approaches have been developed that do not only consider
the externally visible behavior of the Web application, but also its internals.
Kung [17] models the state-dependent behavior of interacting components in a
Web application (client pages, server pages, and software components) as hier-
archical, communicating state machines. In another paper [9], Di Lucca models
the behavior of a Web browser as a statechart to generate test cases which
can account for out-of-order messages caused by interactions with the browser
buttons. Wittevrongel [24] outlines a scenario-based approach for testing Web
applications in which test cases are automatically derived from sequence dia-
grams. Probert [19] suggests the use of an object-oriented extension to TTCN
for (manually) defining various types of tests targeting Web applications.
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Use Case Maps have been used to model the dynamics of complex systems in
such domains as telecommunications and e-business process modeling [1, 6, 23].
They are being considered for standardization as part of ITU-T’s User Require-
ments Notation [13, 22]. From the perspective of modeling Web applications,
two prior approaches are of particular relevance. Kaewkasi [16] uses Use Case
Maps to model object-oriented Web applications in his Web Application Mod-
eling (WWM) approach. Gordijn [10] models business processes with Use Case
Maps as part of his e3-value approach for analyzing value creation and exchange
in e-business models.

Several UCM-based testing approaches have been developed in recent years.
Three main families have been compared in [3]: testing patterns (manual), sce-
nario definitions (semi-automated), and translations to formal specifications
(more automated). Among these three, scenario definitions [2] proved to be prac-
tical in many contexts as this approach is scalable, it prevents the generation of
incorrect test purposes, it is supported by tools, and it generates test purposes
in an XML format amenable to further transformations (to sequence diagrams
or TTCN test skeletons, for example). However, it requires human intervention
for the (simple) definition of the scenarios leading to test purposes, and to add
data information to test purposes in order to convert them to real test cases. In
this paper, this approach will be explored in a new context where we attempt
to generate concrete test cases for a Web application.

3 Web Application Case Study

The system under test (SUT) is a Web application for an online store (named
widgets.com) where users can purchase license keys for software components
(or widgets). It has enough non-trivial behavior to be interesting from a testing
perspective, but is no more complex than necessary to exhibit several planted
bugs used to validate our approach. It implements the four use cases shown in
Figure 1: Browse Catalog, Checkout, Process Payment, and Download.

Browse Catalog comprises selecting categories, selecting products to request
product detail, adding products to a shopping cart, and editing the cart. Check-
out includes signing in for an account, building an order summary, and con-
firming the order. Process Payment involves asking the bank to process the
payment information associated with the account. Download comprises going
to a download area, and downloading the purchased licenses. Actors include
customers and a bank. Figure 1 also shows the normal flows for the two key
use cases, Browse Catalog and Checkout. The full model also includes their
variants.

The application follows a standard Model-View-Controller Model 2 architec-
ture with a main controller, and subcontrollers (request handlers) and associated
views (renderers) for each use case that do the actual work [7]. The application
is implemented as a Java servlet, and executes in a servlet container (in our
case the Tomcat servlet engine [20]). In the case study we did not make use of a
specific Web application framework such as Struts or J2EE. While such frame-
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Fig. 1. Use case diagram for the widgets.com online store with two use cases

works can simplify the development of large Web applications, their use might
also make our approach framework-specific, and thus less general.

Figures 2 to 4 show three typical screenshots of the online store application.
In the first one, the left column of the page contains a list of available widget
categories, and its center shows the contents of the shopping cart after a number
of items have been added by following the Browse Catalog use case. Selecting
“Proceed to Checkout” will terminate Browse Catalog, and initiate the Checkout
use case. In that use case, the first screen (Figure 3) requires the customer to
input a valid account number. Once the order is confirmed, the payment done,
and the invoice displayed (not shown), the customer proceeds to the Download
use case, where the bought widgets and license keys are available for download
(Figure 4).

4 UCM Model and Scenarios

Use Case Maps (UCM) are a notation for modeling scenarios. Unlike use cases,
UCMs allow us to model the dynamic behavior of an application. UCMs also
allow us to model concurrency within a scenario. A single UCM can furthermore
show multiple scenarios at once, and therefore allows us to study the interaction
between scenarios, or multiple instances of the same scenario. However, unlike
other scenario-modeling notations such as UML sequence diagrams or Message
Sequence Charts (MSCs) [12], UCMs do not require an early commitment of
scenarios to messages or to components.
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Fig. 2. Web application screenshot: Cart content while browsing

Fig. 3. Web application screenshot: Signing in with an account number

4.1 Use Case Map Model

A scenario is a partially-ordered set of responsibilities (activities, tasks, func-
tions) that a system performs to transform inputs to outputs while satisfying
certain pre- and postconditions [1]. The basic notational elements for modeling
scenarios with UCMs are responsibilities (X’s), paths (curved lines), start points
(black dots), and end points (bars). Scenarios progress along paths from start to
end points. Paths can fork to represent alternatives and concurrency, and also
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Fig. 4. Web application screenshot: Downloadable widgets with license keys

Fig. 5. Root map for the widgets.com online store

join. Responsibilities can be allocated to components by placing them within the
boundaries of that component (rectangle). Figure 5 shows the root (top level)
map for the widgets.com applications introduced in the case study.

The UCM notation also provides a hierarchical abstraction mechanism in
the form of stubs (diamonds) and plug-ins (sub-maps). Each hierarchy of maps
has a root map that contains stubs where lower-level maps can be plugged in.
Figure 5 shows the root map for the widgets.com applications introduced in
the case study. It contains three stubs, one for the Browse Catalog, one for the
Checkout, and one for the Download use case. Figures 6 to 8 show the plug-ins
for the BrowseCatalog, Checkout, and Download stubs from Figure 5.

These stubs correspond approximately to the initial use cases and to major
phases of the online store application under study. Several start and end points of
the plug-ins are connected to their parent stub’s input and output segments, as
indicated by the corresponding labels between curly braces (IN1, OUT2 and so on).
This binding relationship ensures the continuity of scenarios across different levels
of maps. Note that UCM plug-ins can be nested at many levels. The Checkout
map contains another stub where a ProcessPayment plug-in (corresponding to the
Process Payment use case, but is not shown here) needs to be bound.
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Fig. 6. Plug-in for BrowseCatalog stub in the root map of Figure 5

Fig. 7. Plug-in for Checkout stub in the root map of Figure 5
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Fig. 8. Plug-in for Download stub in the root map of Figure 5

In this model, the start points in the Customer component correspond to
events (such as hyperlinks and buttons) that customers can trigger. The end
points correspond to page updates visible to the customers. Several responsibil-
ities have been identified for the system, but none is assigned to its actors.

4.2 Scenario Definitions

In order to support scenario definitions, as defined in [2, 22], the basic UCM
path model needs to be augmented with a simple data model. Several Boolean
variables, described in Table 1 were created in order to formalize guarding condi-
tions (at branching points), preconditions (in start points), and initial contexts
and post-conditions in scenario definitions themselves.

Preconditions were added to many start points to reflect the situations under
which they can be triggered. For instance, the preconditions for the start points

Table 1. Global Boolean variables used in the UCM model

Variable Description

CanAddProd Products can be added on this page.

CanGoDownload Can go to the download area.

CanPlaceOrder An order can be placed on this page.

CanSignIn The customer can sign in.

CartAvailable The cart is visible.

CategoryAvailable Categories can be selected on this page.

InBrowser In the browser page.

InCheckout In the checkout page.

InDownloadArea In download area.

ProductsDisplayed Products are displayed.

SuccessfulDownload The download was successful.

ValidAccount The customer account is valid.
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Table 2. Start point preconditions and parameters for the BrowseCatalog map

Start Point Precondition Parameter

enterSite – –

browse InBrowser –

selectCategory InBrowser ∧ CategoryAvailable Category

selectProduct InBrowser ∧ ProductsDisplayed Product

addToCart InBrowser ∧ CanAddProd –

editCart InBrowser ∧ CartAvailable Product

viewCart InBrowser –

goCheckout InBrowser ∧ CartAvailable –

Table 3. Variables modified by responsibilities in BrowseCatalog map

Responsibility Modifications (T for True, F for False)

getCategoryProducts ProductsDisplayed ← T

goCheckout InBrowser ← F, CartAvailable ← F, CategoryAvailable ← F

showCart CartAvailable ← T, CanAddProd ← F, ProductsDisplayed ← F

showDetail CanAddProf ← T, ProductsDisplayed ← F

showWelcome InBrowser ← T, CartAvailable ← F, CategoryAvailable ← T

in the BrowseCatalog plug-in map are described in Table 2. Several responsibili-
ties in this UCM also modify the content of these variables. Table 3 shows, for
the same map, how these variables are updated by the responsibilities.

Several scenario definitions were then added to our UCM model. Each such
definition consists of a name, initial values for the variables, a list of start points
to be triggered, and an optional post-condition expected to be satisfied at the
end of the execution of the scenario. Scenario definitions can be combined to
a path traversal algorithm in order to highlight specific scenarios in a complex
UCM model, or to transform them to other representations. Details of the var-
ious algorithms used here can be found in [2, 22]. In a nutshell, the algorithm
uses a depth-first traversal of the graph that captures the UCMs’ structure and
generates scenarios where sequences and concurrency are preserved, but where
alternatives are resolved using the Boolean variables. If conditions cannot be
satisfied or evaluated during the traversal (e.g., in a precondition or in guarded
branches), then the algorithm stops and reports an error.

In our model, we created a non-exhaustive collection of scenario definitions
to cover the interesting functionalities offered by the system, as well as all the
UCM path segments in the model. Although scenarios extracted from a UCM can
be used for many reasons (model understanding, scenario highlight, generation
of MSCs, etc.), our goal was to explore the generation of several typical test
purposes for testing our Web application. In Table 4, the first four scenarios
represent four normal and expected usages of the Web site whereas the last
three target specific types of faults in the implementation.
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Table 4. Scenarios for the widget.com UCM model

Scenario name Description

BaseCase Primary scenario where customer buys one widget and
everything works.

SecondThoughts The customer goes back to the browsing mode while
checking out, in order to review the cart.

ManyProducts Several widget products are bought by the customer.

InvalidAccount Checks that the customer cannot download widgets
without a valid account.

RemoveWidgetOnCart The customer edits the shopping cart where a widget
has been added, and sets its quantity to 0.

DiscountOnOrders Checks whether the discount is correctly applied when
widgets are removed.

MultipleOrdersTwoCustomers Checks that two customers with the same login (from
the same company) can order widgets at the same time.

Table 5. BaseCase scenario definition

Initialization ValidAccount ← T

Start points enterSite, browse, selectCategory, selectProduct, addToCart,
goCheckout, placeOrder, goDownload, downloadWidget, exit

Post-condition SuccessfulDownload = T

As an example, the scenario definition of BaseCase is presented in Table 5.
All the other scenarios are constructed in a similar way.

The UCMNav tool [21] was used to model this UCM and define and explore
these scenarios. Each produced scenario was also automatically exported to an
XML file, which uses the format described in [2]. Although these files are too
verbose to be included in this paper, the result of the BaseCase scenario is shown
as a MSC in Figure 10(a). Note that such MSCs were not used in this study;
this one is included here to better visualize the scenario generated.

5 Test Environment

As explained in the previous sections, UCMNav was used to create a UCM
model, with variables and scenario definitions, for the target Web application.
This tool was also used to generate an XML file for each scenario, hence pro-
viding the desired test purposes. Figure 9 illustrates the remaining steps of our
approach. We created a small conversion application (in Perl) called UCM2FIT
(section 5.2), which converts the XML test purposes to FitNesse test cases, pro-
vided some additional information (a configuration file and user-selected values).
The tests are automatically installed in the FitNesse test environment (described
in section 5.1), which requires an adaptation layer composed of fixtures to run
them on the SUT and produce test results.
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Fig. 9. Overview of the testing process used in the case study

5.1 FitNesse Framework

FitNesse is a tool popular in the Extreme Programming community [18]. It pro-
vides an environment for authoring and executing acceptance tests from within
a Web browser. It is itself based on two subsystems: a Wiki clone and FIT
(Framework for Integrated Test). Wiki can best be described as a Web-based,
collaborative editor. FIT is the core framework for executing acceptance tests.1

FitNesse provides a Java-based implementation of Wiki that incorporates FIT,
and can be run without a Web server. Partial support for .NET is also available.

The combination of FIT and Wiki can best be described as a “literate pro-
gramming” environment for tests. Not only are documentation and tests kept in
the same place, but tests can be defined in a very simple way by creating a table
or a spreadsheet, which can even be edited in Excel and copy-pasted into Fit-
Nesse. The first row of each table defines the type of fixture to use for the test, and
the remaining rows specify the test data to be interpreted by the fixture. A fixture
is the Java or C# class that FitNesse calls to process the contents of the table.

FitNesse provides a set of standard fixtures. Most relevant in our context
is the action fixture, which allows one to emulate a user interface. It provides
three types of actions to interact with an application: press, enter, and check:
press simulates pressing a button, which is mapped to invoking a method on
the fixture; enter is used to set a value in the fixture; check tests if invoking a
method of the fixture results in a given expected result. The rows of an action
fixture contain a “script” for the class specified in the second row.

For testing Web applications we created a special type of action fixture.
The methods supported by the WebFixture are shown in Table 6. This fixture
was implemented with the help of the jWebUnit framework [15]. This framework
provides a high-level API for navigating Web applications. It includes navigation
via links, form entry and submission, validation of table contents, etc. Behind
the scenes it uses the well-known HttpUnit unit testing framework.

WebFixture can be used on any Web application that uses HTTP. However,
in order to support the testing of a specific application (widget.com in our case),

1 Both Wiki and FIT have, incidentally, been developed by Ward Cunningham, who
is also known as the father of CRC cards, and a well-known pattern and XP guru.
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Table 6. Operations supported by WebFixture

Loading Web pages

base(url) Set the base URL for relative URLs

begin(path) Set a relative URL

Setting bookmarks

getLocation() Get the current URL

setLocation(url) Request the page with the given URL

Checking page attributes and contents

title() Get the page title

contents() Get the content of a page

contains(text) Check if text is present on a given page

contains(id,text) Check if text is present in a page element with given id

matches(pattern) Check if the page content matches a given regular
expression

Clicking links

link(id) Click a link with a given id

linkWithText(text) Click a link with a given anchor text

linkWithImage(path) Click a link in an image given its file path

button(id) Click a button with given id

Submitting form data

form(id) Set the working form given its id

formElement(name,value) Set the value of a field given its name

submit() Submit a form

submit(button) Submit a form by pressing the given button

reset() Reset a form

one can extend WebFixture and add methods that provide an adaptation layer
which can interpret the abstract events in the test purposes to check the SUT.
We hence created WidgetFixture, which contains a short Java method for each
start point in our UCM model. They can be more or less complex depending
on what information needs to be provided on a given Web page. For instance,
selecting a category of widgets (start point selectCategory) on the Web page and
providing an account number (start point signIn) are implemented as follows:

public void selectCategory(String category)
{
linkWithText(category);

}

public void signIn(String accountNumber)
{
form("sign-in");
formElement("account", accountNumber);
submit();

}
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5.2 UCM2FIT

As introduced in Figure 9, the goal of UCM2FIT is to convert an XML scenario
file generated by UCMNav into a FitNesse test case. However, this cannot be
done entirely automatically. Part of the information that needs to be added to
the test purposes can be provided in advance, for instance in a configuration
file, but the information related to the selection of values is currently provided
interactively by the tester, during the transformation.

The configuration file (also in XML) contains the following information:

– The target directory of the test suite, in a place where FitNesse can find it
automatically.

– Test setup information (e.g., path to FitNesse and fixture classes)
– Data types (e.g., categories, products, and account numbers), together with

sample values. These correspond to items that the tester can select interac-
tively when requested by UCM2FIT.

– For each end point in the UCM, a list of text items (information) to be
checked on the Web page.

As an example of information associated to an end point, what is specified for
viewWelcome is a page title and a well-known text pattern that does not appear
on the other pages:

<endpoint name="viewWelcome">
<check type="title" value="widgets.com"></check>
<check type="pattern" value="Welcome to widgets.com"></check>

</endpoint>

This information is used to generate appropriate verification code in the
FitNesse tests each time an end point is mentioned in the test purposes.

When UCM2FIT gets to a start point with parameters in a test purpose
(see Table 2), the human tester is interactively asked to provide a value of that
type among those proposed in the configuration file. For instance, for start point
selectCategory, the value NewsFeeds could be selected. Care must be taken to
select appropriate values so that the test purpose can progress. For instance, if
the test purpose presupposes that the account number to be provided will be
valid, then the selected value must be consistent with this assumption.

Similarly, several end points have been supplemented with output parameters
in the UCM model (something new for this experiment). For example, the end
point showCart has a parameter that corresponds to the cost of the selected
product, which needs to be input by the tester. This cost is checked against the
one displayed on the Web page.

This process is performed once for each test purpose, and it is usually a
matter of seconds to produce one test. The output is a collection of executable
tests coded as (textual) Wiki pages and understandable by FitNesse, together
with an index that corresponds to a test suite. This test suite enables FitNesse
to check all the test cases, in batch, and to provide a summary of the results.
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(a) MSC view (b) Test case

Fig. 10. MSC for the BaseCase scenario and its corresponding FitNesse test

Note that multiple test cases could be generated from one test purpose by se-
lecting different combinations of values (however, this was not done for this
experiment).

Figure 10(b) presents the test case generated from the BaseCase test purpose
(see Table 5), in a tabular form displayed by the Web browser. Note how the
press actions correspond to the start points and how the enter and check oper-
ations are used to verify that the output from the SUT is correct. A recurring pat-
tern is that an enter method specifies an expected value (the patternToMatch),
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and a subsequent check asserts whether the actual value should (or should not)
correspond to (matches) the expected value.

UCM2FIT is currently implemented with standalone, command-line Perl
scripts and a XML::DOM parser. However, this functionality could be integrated
into FitNesse itself in the future.

6 Test Execution and Results

As a measure of the effectiveness of our tests, a number of bugs were “planted”
into the Web application. These are all major functional errors that affect the
function of the application in a significant manner. For example, if a user account
was charged for a widget that they did not order, we consider this a major
error. Minor errors are errors that lead to locally incorrect behavior, but do not
significantly impact the execution of the application. For example, entering a
non-digit as an account number may cause an exception to be thrown, but it
does not lead to an inconsistent state. Below is the list of planted errors:

1. Edits to the shopping cart are not properly updated.
2. Discount ($50 when the total is greater than $100) is incorrectly applied.
3. Race condition: Only the most recent order is shown in the download section.
4. State-/Timing-related: Can add widgets to the cart for free.

Two of these bugs (#3 and #4) require a fault model where many customers,
or many sessions (of the same customer) are active at the same time. In UCM
terms, this means that the same start point (enterSite) can be triggered multiple
times in order to simulate multiple widget buying sessions. This is also supported
by our approach based on scenario definitions.

The results generated by our test suite are reported in Figure 11, which shows
the summary produced by FitNesse. In the summary table, tests that completed
without failures are shown in light grey (pass), while those with failures are
shown in black (fail). As expected, the first four tests from Table 4 did not
reveal any problem in the SUT. These tests validate the intended functionalities
of the application, without looking for subtle types of errors.

Fig. 11. Summary of FitNesse test results
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Fig. 12. Extract of the RemoveWidgetOnCart test result

However, the last three tests of Table 4 revealed three of the four planted
bugs. RemoveWidgetOnCart showed that when the quantity of a product is set
to 0 while editing a cart, then this quantity is not updated correctly (bug #1). In
FitNesse, such an error is reported as a violation of an assertion. Figure 12 shows
how FitNesse displays the test detailed test results for RemoveWidgetOnCart.
Correct assertions are shown in light grey while incorrect ones are displayed in
black together with the expected and actual values.

The test DiscountOnOrder adds items to the cart in excess of $100, and then
removes an item. It revealed that when the total cost of the products in the
cart gets over $100, the $50 discount is correctly applied but, as widgets are
subsequently removed, the discount is (incorrectly) not recomputed. As a result,
a discount may be applied, although the actual total may no longer be above
$100. This state-related stuck at fault corresponds to bug #2.

The last test, MultipleOrdersTwoCustomers, checks the situation where two
customers sharing the same account number try to order widgets simultaneously.
Unfortunately, the implementation suffers from a race condition problem (bug
#3) and the content of only one of the carts is shown for download to the
customers. This scenario is interesting because it required the multiple triggering
of the initial start point, enabling two orders to evolve concurrently.

Bug #4 was not revealed by our test suite. In fact, we could not produce a
UCM-driven test case for it with the current environment. A more sophisticated
fixture supporting forking seems required, and our UCM model needs to be able
to simulate out of order messages more easily (for example, “add to cart” after
“place order”). Such improvements are left for future work.

7 Discussion and Conclusions

In this paper we have described an innovative and lightweight approach for gen-
erating acceptance tests for Web applications from a Use Case Maps (UCM)
model. Through a case study, we demonstrated that this approach is capable of
detecting subtle design errors that often go unnoticed using conventional accep-
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tance testing techniques such as extended use cases [5]. We believe that this is the
first paper to introduce UCM-based testing in this emerging domain. Another
contribution of the paper is to show how abstract test sequences generated from
UCMs can be transformed into test cases in the FitNesse testing framework.

The UCM model presented here uses an unconventional style where many
start points, capturing almost one-to-one the possible user events (hyperlink,
form, or button), are at the source of disjoint paths. Preconditions ensure that
they can only be triggered when the application should allow it. This is a benefit
of the emphasis on the UML data model, but this is also a drawback because,
from a testing point of view, we would also like to test scenarios where such
events are provided in an incorrect or unanticipated order, as one would do
using the back or forward buttons on a browser, bookmarks, or direct URLs.
This is also a limitation of other Web testing approaches, including [8]. A tool
like UCMNav could be extended to allow some flexibility in the checking or
bypassing of these preconditions during scenario generation.

One of the main issues to be addressed in the future relates to how best
to provide suitable data values during the transformation from abstract test
purpose to concrete test case. At the moment, one would need to input such
values each time a scenario is modified. Some of these values could be inferred
from the scenario preconditions (e.g., a valid account number when ValidAccount
is true), others could come from predefined equivalence classes where the values
correspond to the ones the SUT would expect (e.g., using some shared database
for the test setup). Previous choices of values could also be stored independently
and reused whenever possible.

This experiment also raised a few interesting points related to the UCM no-
tation. It seems that being able to provide formal parameters to start points and
end points is very beneficial in a testing context. Also, current scenario defini-
tions focus solely on start points, whereas there might be a need for intermediate
assertions of end point values in the middle of a scenario, and not just at its end.

Another area for future research is a closer integration of UCMs with Ex-
treme Programming (XP), given their relatively lightweight nature compared
to “heavier” approaches such as MSCs, which require an early commitment to
messages or components. Also the extension of the current fixtures for testing
more generic types of Web applications should be investigated in the future.
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Abstract. As testing often consumes over 40% of the typical project
development effort, there is great need for optimizing the testing effort.
In addition, as the cost of fixing defects is dramatically lower when fixing
those close to where they were introduced, finding defects in the early
life-cycle phases is critical. TTCN-3 (Testing and Test Control Notation),
developed at ETSI and standardized by the ITU-T, enables testers to
specify test cases for the various types of testing, and supports reuse
of test artifacts. We have used TTCN-3 as a complete test solution in
the development of network element software. This paper presents the
benefits we have observed during system development and provides a
comparison with other testing practices deployed in our organization.

1 Introduction

Testing consumes typically over 40% of the total software engineering effort in
telecommunication system development. A typical breakdown of the total test
effort is shown in Table 1, as based on our experience in developing telecommuni-
cation systems (the data in this table represents our base line of expected effort
as averaged from a reasonably large number of similar development projects).
These development projects traditionally have used languages such as C, Perl,
or Tcl to specify test suites and implement test environments. From this ta-
ble, it is apparent that most of the effort is spent on developing the environ-
ment for carrying out the overall test activity, followed by the development
of the test cases. It is also clear that most of the effort is spent in activi-
ties other than testing of the system under test. Test teams typically use or
develop different tools and environments for integration testing, performance
testing, conformance testing, and load testing, with minimal reuse between
them, or no-reuse at all. When a defect is detected, it takes considerable time
to associate this defect with the appropriate aspect of the system under test
due to the hand-crafted test environment, difference in environments, differ-
ent test scripts, and the manual effort of tracing tests to requirements, de-
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sign, or code artifacts. It is plain that development projects could save sig-
nificant efforts were they to spend time only on test objects by using stan-
dard test environments, which have the capability to support different types
of testing activities, rather than developing custom environments every time
again.

The results of an earlier pilot project in protocol implementation encouraged
us to rely on TTCN-3 and supporting tools for the development of a major
release of a telecommunication system. This system required, of course, unit
testing, and integration testing. As the developed network elements were per-
formance critical, we also needed to perform rigorous performance testing, con-
formance testing, load testing, and reliability testing. We wanted to rely on
a single environment that could support these testing needs in a transparent
manner and would allow us to reuse as much of the test artifacts as possible.
In addition, some of the network elements were developed using a new devel-
opment methodology (UML 2.0 and supporting tools), and thus, testing also
involved profiling the system under test to obtain performance measures such
as message queuing times, message processing times, timer delays, etc., under
different call load scenarios, in order to obtain insights about the adequacy of
this methodology.

Table 1. Effort Distribution in conventional testing

Test Activity Effort Spent

Test architecture 7%
Test design 10%
Test case identification 8%
Test case development 20%
Cost of Quality of Test System 7%
Communication, encoders and decoders 8%
Test Environment (Logging, Tracing, Defect detection support,
Validation, Regression testing, other support activities) 25%
Test Management (Test case Organization,
description, communication with customer, etc.) 7%
Other (Learning, procurement, setup) 8%

100%

This paper summarizes our experiences and the benefits observed of lever-
aging TTCN-3 in this development project. Section 2 highlights the features of
the TTCN-3 language and the supporting tools we deployed. This section also
overviews our testing approach and our test architecture. The sample test case
in section 3 illustrates various features of TTCN-3. Section 4 describes our de-
velopment project. In section 5, we give a comparison of the traditional test
development approach relying on programming languages such as C, Perl, or
Tcl with the TTCN-3 approach. We conclude with a summary of the impact
TTCN-3 had on our testing efforts.
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2 TTCN-3

Recent efforts at ETSI have led to the introduction of a common general purpose
testing language for the industry: TTCN-3 (Testing and Test Control Notation).
While its precursor TTCN-2 was mainly used for communication and network
system or subsytem testing, TTCN-3 has a rich set of features which make it
suitable for other domains also, such as automotive or telematics applications [5],
as well as for different types of testing activities. We believe that TTCN-3 ad-
dresses most of the issues raised in section 1.

2.1 TTCN-3 as a Test Solution

The following features of the TTCN-3 language make it suitable for the testing
of communication and network systems as well as for other domains.

– Synchronous and asynchronous communication mechanisms help in testing
of procedure based and message based systems.

– Data and signature templates with corresponding matching mechanisms pro-
vide flexibility to the user to reuse these templates across various test cases.

– The user is able to specify the expected messages with all applicable message
parameters required to determine that a test case has passed.

– Separation of test case specification from execution control. The same test
case can be executed in a loop at specific time intervals, or it can be grouped
with other test cases, or it may be sequenced for stress testing, and so on.
Each test case can thus be independently controlled.

– Dynamic concurrent testing configurations provide the user with a flexible
option to simulate the behavior of unavailable components (for example,
components that are still under development). This feature also helps in
writing the test case in a more realistic scenario in the presence of concurrent
components.

– Encoding information can be specified along with the test case. Note that at
times the same message has to be encoded or decoded differently, depending
on the context.

– Test cases may be written in programming languages (such as C), MSC
notation, or the tabular format familiar from TTCN-2.

– External code integration provides the flexibility to integrate legacy encoders
or decoders, code libraries, transformations, etc.

– Regular expressions greatly simplify the specification of expected messages
– Extensions to implement automatic configuration of the system under test

(SUT) using SUT operations.
– Finally, TTCN-3 is a standardized language supported by commercial tools,

such as Telelogic Tau Tester or Testing Technologies TTThree.

2.2 Overview of Tau Tester

Telelogic Tau/Tester is a tool for designing, creating, and executing TTCN-3 test
suites. It includes editors for TTCN-3, ASN.1, and text. The tool provides build
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facilities, an integrated MSC viewer, and a log file creator. The major features
of Tau/Tester are as follows.

– Support for TTCN-3.
– Support for ASN.1 PER (aligned and unaligned) and BER (definite and

in-definite) encoding and decoding rules.
– TTCN-3 encoding/decoding must be written manually.
– Integrated development environment.
– On-line help.
– C code Generator.
– Support for TRI and PL (proprietary) integration mechanisms.
– Provides logging, document generation, and recording of the test execution.

2.3 Test Environment Architecture

The typical test system architecture and components/tools involved in test-
ing are shown in fig. 1. TTCN-3 files which comprise the test system archi-
tecture, its behavior, data and control, along with the adaptation code (en-
coder/decoders and communication between test system and SUT), are pro-
cessed by the TTCN-3 tool which generates code, produces a makefile, and
compiles the test system. Test cases can be controlled by the user through the
execution control UI. The communication between test system and SUT can
be implemented using standard TCP/UDP communication links or proprietary
protocols.

Fig. 1. Test Environment Architecture
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2.4 Test System Architecture

Figure 2 shows the components of the executable Test System. TTCN-3 gener-
ated code executes on top of the runtime system libraries that implement the
abstract constructs of the language. The runtime system controls the execution,
it encodes/decodes messages using appropriate codecs, and logs system events
via the log management system. Communication with the SUT is through the
communication system.

Fig. 2. Test System Architecture

2.5 Test Development Process

Figure 3 outlines the major phases of test development. Sequence Diagrams or
MSC/HMSC [6] are often used during the test requirements phase. Using these
notations, both valid and invalid test scenarios can be described easily. During
the architecture phase, a choice has to be made between multi-threading (the
multi component/concurrent model) and the simple/single component model.
In general, for integration or system testing, a single component model meets
most of the requirements. The concurrent model, on the other hand, is well-
suited for load testing. In a test architecture following the concurrent model,
the test verdict depends on the verdicts for the individual components. The test
data is represented using templates and passed as arguments to the messages.
Parameterized templates and regular expressions may help to increase the reuse
of test data and test cases. The test cases can be called in sequence to form an
integration suite.
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Fig. 3. Phases in test system development

3 Sample Test Case

From the example test case [1] below we can easily see the the various aspects of
a TTCN test: architecture, behavior, and control. The detailed test description
can be seen from the sequence diagram and objectives table in fig. 4.

module sampleTC_valid
{
// Data Definitions
type record Packet
{

integer info,
charstring data

}
type port DataPort message
{

inout all;
}
// Test Component declaration PTC
type component MyTestComponent
{

port DataPort CompPort;
timer TCWaitTimer:= 100.0; //seconds

}
type component SystemComponent
{

port DataPort SysPort ;
}
// template definitions
template Packet send_message :=
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{
info := 1,
data := "Connect"

}
template Packet expected_message :=
{

info := *,
data := "Response 1"

}
/* test case TC_01 */
testcase TC_01() runs on MyTestComponent // defines MTC
system SystemComponent
{

log("Start test case execution for TC_01");
map(mtc: CompPort, system: SysPort);
CompPort.send(send_message);
TCWaitTimer.start;
alt
{

[] CompPort.receive(expected_message){
TCWaitTimer.stop;
setverdict(pass)

}
[] any port.receive{

TCWaitTimer.stop;
setverdict(fail)

}
[] MaxTimer.timeout{

setverdict(fail)
}

}
unmap(mtc: CompPort, system: SysPort);

}
control /* control part of the module */
{

execute (TC_01 ());
}

} /* end of the module */

The architecture part of this module begins by declaring a simple message
data structure referred to as a packet, comprised of an info integer field followed
by the data characterstring. Then a simple port type able to convey arbitrary
bidirectional messages is declared. We then describe two components, the test
driver and the component representing the SUT. These communicate via the
identified ports.
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Then two templates for messages are defined: A message to be sent to the
SUT, and the expected reply message. The latter defines the pattern a message
received from the SUT has to satisfy to be recognized as a reply. In this particular
case, a reply message may have an arbitrary info field, as indicated by the *
(wildcard) symbol, but must have Response 1 as data. In the control behavior
section, a simple test case is defined. Upon invocation, the connection between
test driver and SUT is established, the first message above is sent to the SUT,
and a timer is started. The test component now is waiting for one of three events:
Either the defined reply message is received at the appropriate port, upon which
the timer is stopped and the test case is considered to have passed. If any other
message is received on any port, or the reply message is received on any other
port, the timer is stopped and the test case is considered to have failed. Similarly,
if the timer expires without the reply message having been received, the test case
is considered to have failed. Then the connection between test component and
SUT is deleted.

Finally, the control part simply tells us to execute that single test case.

Identifier MSC TC Valid

Reference to
requirement

Requirement #1

Initial
Condition

Initially in Idle State

Checks to be
performed

Test component should
now address a port of
SUT.

Verdict
criteria

Message has been received
successfully

Fig. 4. Sample MSC and Objectives Chart

4 Case Study Overview

This paper presents a case study of testing a basic network element developed
using UML 2.0 for a high-availability target platform [3]. It also outlines the ben-
efits of TTCN-3 as compared with conventional testing practices using languages
such as C, Perl, or Tcl.

In this project, we developed a new mobility management layer for a CDMA
network, with high availability and scalability to meet next generation demands.
The project involved development of the call processing stack, as well as mobility
management, resource management, and link management components of the
core network.
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The call processing layer was architected using configurable working threads
to share the call load (see fig. 5). This layer was developed from UML and imple-
mented on a High Availability platform. A main concern of this implementation
was the ability to handle are large call load, and be flexible to support further
increasing call loads. Calls are routed by the main thread (Router Thread) to
call processing threads (labelled Thr1, Thr2, etc., in fig. 5), which then process
these calls with the help of supporting threads. The Router Thread performs
load-balancing across the call processing threads. The number of call processing
threads can be configured dynamically depending on the call load.

Fig. 5. Architecture of the System Under Test

Test cases were developed for integration testing, system testing, component
testing, and load testing. The load system used two components to simulate
two interfaces of the system. Along with the test system, user defined library
functions had to be integrated to calculate the response times of the SUT. The
integration test cases were also used for system testing by systematically inte-
grating each module and interface.

4.1 Architecture

The Abstract Test System may have either one or two components in addition to
the encoder/decoder (Adaptation Layer) with ports for message exchange with
the SUT (see fig. 6). The Abstract Test System Interface (ATSI) receives two
kinds of messages; hence there are two ports, one for each kind of message. The
test system ports establish a TCP connection with SUT ports or use UDP data
packets to exchange messages with the SUT.

The static test execution setup is shown in fig. 7. It shows the system under
test (right-hand side) and the Test System (left-hand side) communicating via a
TCP/IP connection. The SUT is comprised of application code (in this case gen-
erated from UML 2.0 designs), encoder/decoder, tool-specific run-time library,
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Fig. 6. Test System Architecture

and a communication module, whereas the major components of the test system
are the TTCN-3 generated code, the TTCN-3 run-time library, encoder/decoder
and the communication module. In-coming messages are sent to the application
layer after decoding by the respective decoders. Out-going messages are encoded
by the respective encoders and then sent to the target system. As there are two
types of messages being exchanged, both systems have two threads for receiving
each type of message. The Telelogic Runtime Library simplified the creation of
these threads by providing appropriate hooks, for both SUT and the test system.
The generated application code too executes on separate threads; the underlying
Runtime Library provides mutual exclusion for all these interacting threads.

Fig. 7. Static Test Execution Setup

Both single (S-TTCN) and multi component models (C-TTCN) are used for
load testing; the single component model is used for integration and system test-
ing. During load testing, the SUT receives messages from different test systems,
instead of a single test system as in conformance testing and integration testing.
The dynamic execution setup for load testing is shown in fig. 8.

A TTCN-3 implementation has 4 modules: Data types, architecture, behav-
ior, and control modules. The external functions are defined in a separate mod-
ule. The relationships among the modules are shown in fig. 9.
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Fig. 8. Load testing execution setup

Fig. 9. Relationships among TTCN-3 modules

4.2 Test Case Development

For integration testing, separate test cases were developed for call setup, call
termination, and hand-off. Both success and failure test cases were defined to
gain further confidence in the system behavior. Most of the system test cases
were obtained by reordering and combining the individual integration test cases.
For example, the reference MSC in fig. 10 below shows that the system test
case “end-to-end Call Test” results from the integration of the three basic test
cases for call setup, handoff, and call termination. Such integration is achieved in
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Fig. 10. Reference MSC for Call Setup

the control module; in addition, some templates were changed to obtain invalid
behaviors to ensure better coverage of the SUT.

4.3 Load Testing

After ensuring that the system is initialized properly, the test system gener-
ates the first call setup message following the single component load test system
model. Calls are generated as per the configuration at different rates (from one
call per second to 30 calls per second) with other messages interleaved. Timers
are used to configure the load on the system. Since the structure of each message
was similar, a message type was created, and all messages contained this struc-
ture as their parameter. The contents of this structure was changed whenever
messages were exchanged by the corresponding systems. On the concurrent com-
ponent model, the main test component creates the call generator component
after every interval, which in turn generates one call and dies after termination of
that call. External functions were used to measure the time taken before sending
and after receiving messages. These functions measure the performance of the
SUT as well as of the test system. Based on performance measurements, the call
rate was increased or decreased. The result of each test case was logged to a file.

5 Comparison with Conventional Testing

Languages such as C, Perl, or Tcl are not primarily intended as testing languages,
but they do enable us to write test cases. Often engineers think that testing is
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merely calling a function to send a message and later comparing the result ob-
tained with the expected result; this mentality eventually leads to ad-hoc testing.
In such testing, different test environments are often repeatedly developed, and
unnecessary logic for comparisons often reduces the time available for implement-
ing test cases and the test system. Conventional languages provide few or no sup-
porting facilities to go beyond ad-hoc testing and to manage testing in a system-
atic way. Developers have to visualize, plan, and implement everything starting
with architecture, the separation of encoding/decoding from behavior, communi-
cation, comparison logic, logging, data management, reporting, document genera-
tion and so on. However, most of these features are provided directly by TTCN-3,
which may immediately impact various business parameters (see Table 2).

Table 2. TTCN-3 impact compared to that of conventional languages

Business Parameters Conventional Testing TTCN-3

Productivity 1x 2x (Better)
Impact on Quality 1x 2x (Better)
Impact on CTR 1x 1.5x (Better)
Reuse 1x 2x (Better)
SUT coverage (same effort) 60% 90%

These parameters were estimated before the project and have been verified by
other projects. Test coverage was estimated to be at 90% with the same amount
of test effort, based on the baselines of the organization (as compared to 60%
test coverage with conventional testing).

With respect to features of the TTCN-3 language, the following observations
surfaced:

– Templates and timer handling enabled good solutions for integration testing,
reliability testing, performance testing, and load testing.

– Control logic, modified templates, and concurrency allowed us to write load
generation and processing logic conveniently as part of the test case.

– TTCN-3 code is independent of the platform it is developed on, and it further
is very portable. The same TTCN-3 code was used with another tool, with
only minor modifications to integration code (adaptation layer).

– Considerable amount of reuse across different types of testing was achieved,
in particular resulting from reusing test cases and templates.

– The cost of quality of the test system was substantially less by virtue of
concentrating only on test objectives.

– Generated test systems can be used as back ends because of their easy inte-
gration with other system components, developed in arbitrary languages.

Table 3 shows the distribution of the total test effort for projects leveraging
TTCN-3. From this we can conclude that within a given time one can develop
more test cases with better quality using TTCN-3, as compared with the conven-
tional approach (in Table 1). While a new network element was developed during
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this case study, we feel that the data observed is representative of telecommuni-
cation system software in general.

In our experience, the test effort spent on projects following the conventional
approach is roughly 1.5 times the effort spent in projects developing test suites
using TTCN-3 and leveraging a TTCN-3 execution environment.

Table 3. Effort Distribution using TTCN-3

Test Activity Conventional TTCN-3

Test architecture 7% 8%
Test design 10% 7%
Test case identification 8% 15%
Test case development 20% 45%
Cost of Quality of Test System 7% 7%
Communication, encoders and decoders 8% 8%
Test Environment (Logging, Tracing, Defect detection
support, Validation, Regression testing, other support
activities)

25% -

Test Management (Test case Organization, descrip-
tion, communication to customer etc.)

7% 5%

Other (Learning, procurement, set-up) 8% 5%

100% 100%

Table 4 further summarizes the impact of TTCN-3 on testing based on the
test projects done in our organization.

6 Conclusions and Recommendations

TTCN-3 enabled the development of a test environment which supported the
various types of testing required and the reuse of test artifacts between these test
efforts. Further opportunities for automation were identified and implemented,
such as the generation of proprietary encoders/decoders and the generation of
TTCN-3 data types from UML 2.0 data types.

Based on our experience and observations from this and similar projects, we
feel that test automation with TTCN-3 can be beneficially employed for module
testing, integration testing, performance testing, conformance testing, and load
testing of communicating and event driven systems. Though TTCN-3 is claimed
to be general purpose, some enhancements are required to truly make it suitable
for testing GUI and data base systems.

We strongly feel that TTCN-3 is well suited for testing in the infrastructure
domain. Not only did it help the testing and development teams to generate
test cases faster, but also, debugging of test cases became easy. The benefits are
significant for medium and long-term projects (but impact is harder to assess
for projects with short cycle times). We expect the emergence of TTCN-3 as a
prominent testing technology, across a wide variety of domains.
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Table 4. TTCN-3 Impact on testing

Feature Aspects Our Rating

Test architecture The framework provides good mechanism with
Simple TTCN and Concurrent TTCN

Excellent

Test design The design is modular and independent from
the platform

Excellent

Test case
specification

No explicit support but MSC can be used
extensively to document the test cases

Very good

Test data Very good support with templates, parameter-
ized templates etc.

Excellent

Test execution Good support for execution of a test cases
from the test control block

Very good.
Scope for some
improvements

Modifiability of test
cases

Templates, modular development Excellent

Test reporting Indicates which test have failed and passed,
with reasons and byte information

Good.

Reuse Test case and data level reuse Excellent

Log management Supports MSC and text based logging Excellent

Ease of learning of
the language

4 days of learning and practice are needed Satisfactory

Support for ASN.1 Support for ASN.1 data types Excellent

Support for
Encoder/Decoder
generation

Automatic generation of support for
encoders/decoders from TTCN-3, ASN.1
and mixed types

Very good for
ASN.1

Support for test
management

Support dynamic selection of test cases Good

Support for test
case verification and
validation

Compilation of the test cases, definitions etc Very good

Scope for further
automation

TTCN-3 encoder/decoder, structures,
generation of test cases from requirements,
test management integration etc.

Excellent

Legacy and External
code Integration in
Test System

Library Integration and encoders/decoders for
the library parameters have to be written
explicitly

Bad
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Abstract. This paper presents a validation approach that exploits the
compositional properties of a system. Our results can be applied on sys-
tems modelled by state machines and asynchronous communication by
message passing. We consider two axes of composition: horizontal compo-
sition across system components, and vertical composition within com-
ponents. Along the horizontal axis, we reduce the complexity of valida-
tion analysis by using a projection technique that allows us to validate
interactions between components pairwise. We further simplify by intro-
ducing a set of design rules that support the development of well-formed
state machines. When these rules are enforced, we are able to apply a
simplified compatibility checking algorithm. Along the vertical axis, val-
idation is applied incrementally. Elementary component collaborations
are validated first, then their composite.

1 Introduction

A potential benefit of component-based software systems is increased flexibility.
Systems built from components may be recomposed - possibly at run-time -
to address changing user requirements or variable execution contexts. However,
the compositional approaches introduce new complexities both from design and
analysis viewpoints. The developers design components that may be used in
multiple settings. Some of these settings may not be well understood at design
time. Furthermore the developers have to deal with components and component
variants that may have been developed by other parties. Our aim is to provide
developers with tools that contribute to comprehension of and confidence in
component variants and component collaborations. To that end, our work [5]
has addressed two issues:

– Modularity and composition. We propose a role-based composition approach
that supports incremental system development and contributes to under-
standing collaborations between components and collaborations among inner
parts of components.

– Validation. We propose an incremental validation approach tightly inte-
grated with the composition approach, providing support for checking that
components interact consistently.
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Fig. 1. Composition Axes

This paper presents the validation approach. However, as the composition
and validation approaches are tightly integrated, we shortly introduce the com-
position concepts. More details about composition can be found in [5] and [7].

We distinguish between two axes of composition (see fig. 1): horizontal com-
position across system components, and vertical composition within components.
A Service (or a service feature) is the result of a collaboration between compo-
nents. Each component provides a partial functionality, called a role, in a collab-
oration. Horizontal composition deals with linking roles played by different com-
ponents into a collaboration. Vertical composition deals with the composition
of roles within a component. Our validation approach takes the compositional
properties of a system into account:

– Along the horizontal or collaboration axis, validation is applied to check
the interactions between roles. The interaction behaviour provided (and re-
quired) at a component role interface is derived from the component role
behaviour by projection [8].

– Along the vertical axis, validation is applied incrementally. Elementary col-
laborations are first validated, then the collaborations obtained by compos-
ing elementary collaborations, etc.

Our work has focused on teleservices: services that aim at coordinating the
responsibilities of the participants involved in a telecommunication session. Mod-
elling teleservices in terms of active objects, state machines and asynchronous
communication by message passing is widely adopted in telecommunication en-
gineering approaches, and has proven to be of great value. We have favoured the
use of the modelling language SDL [13] because its formal semantics enables an
unambiguous interpretation of the system specification. However, our results are
not bound to SDL. They may be applied to systems specified using other mod-
elling languages that support active objects and state machines, as for example
the recently adopted UML 2.0 specification [19].

A major concern in our work has been to provide “developer-friendly” vali-
dation techniques: that means techniques that are easy to understand and use.
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Fig. 2. Service role collaborations

Verification and validation techniques often require high competence and knowl-
edge of formal modelling and reasoning on the part of the system developer, and
their use in the software industry is rather moderate. Our approach, although
thoroughly justified, remains pragmatic.

1.1 Structure of the Paper

First we shortly introduce the concepts of role, collaboration and composition,
and explain how collaboration and composition contribute to increased modular-
ity and flexibility. In section 3, we discuss validation according to the horizontal
axis and propose techniques for validating interactions between associated roles.
In section 4, we discuss incremental validation along the vertical axis. Finally,
we present our experimentation results and plans for further work.

2 Role Collaboration and Composition

As a means to break down the complexity of service design, we have adopted a
role-based design approach [20]. A service is modelled as a collaboration between
services roles played by components that interact in order to provide services.
Service roles enable us to better comprehend the contribution of a component
in a service. Beyond increased understandability, experience suggests that role
modelling provides better support for system adaptation and reuse than class
modelling, because the unit of reuse seldom is a class, but rather a slice of
behaviour (or collaboration) [18].

Figure 2 illustrates how an invitation service feature involving three partic-
ipants may be modelled using roles and role collaborations. Here three compo-
nents are involved, where one plays two roles in the service.

A particularity of teleservices is that they usually consist of subservices or
service features. The features may either occur sequentially (this is the case for
a multi-phase service) or concurrently. Figure 3 illustrates the two cases. In (a),
the service consists of three phases: invitation, setup and release, that occur
sequentially. We propose to model these phases separately. We describe three
collaborations and compose the collaborations and associated roles sequentially
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to obtain the overall service. In (b), the invitation service feature is enriched with
a forwarding service feature. We model this by composing the two elementary
roles invitee and forward concurrently.

These simple examples illustrate that composition can be considered along
two axes:

– Horizontal composition across systems. This is modelled through role col-
laboration by the interaction between roles.

– Vertical composition within components. This is modelled through role com-
position by the sequential or concurrent composition of elementary roles
within a component in order to obtain more complex behaviours. There ex-
ist various types of dependencies between roles that constrain the form of
composition that can be applied. While sequential composition enforces be-
haviour ordering, concurrent composition supports simultaneous behaviours.

Role collaboration and role composition are modelling techniques that con-
tribute to increased service flexibility and facilitate service adaptation. As shown
on fig. 4, services may be modified at different granularity levels:

– A role in a collaboration may be replaced by a new role and/or new roles
may be added.

– A role in a collaboration may be partially modified. Composite roles may be
modified by replacing or adding elementary roles.

Of course, a main concern when modifying services in these ways is to ensure
that the new or modified service role interacts consistently with the other roles.
This is the aim of the proposed validation approach

2.1 Role Modelling in SDL

We have used SDL in order to model service roles, role collaboration and compo-
sition [5, 7]. The concept of composite state in SDL is especially useful as it allows
us to use the same mechanisms for modelling elementary roles and composite
roles.In contrast to [21], we do not introduce any new language for modelling
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role collaborations. Using SDL modelling concepts uniformly at the elementary
and composite levels, we are able to exploit the same techniques for validating
collaborations at both the elementary and composite levels.

Note that the proposed validation techniques can be applied to state machines
and composite states in general. We use the role concept as it fits well with the
notion of a partial component behaviour and it also encourages the designer
to produce modular service descriptions thereby increasing understandability of
components and services.

3 Role Collaboration and Validation

The first axis of composition we consider is the horizontal composition axis:
the collaboration between roles. Recall that we aim to compose services in a
flexible way, possibly at run-time. Thus, it should be possible to validate new
roles introduced dynamically in a service and ensure that the new service roles
interact consistently with their collaborating roles. In that context, we avoid a
complex analysis of the whole modified service and seek to develop techniques
that restrict the validation analysis to the parts of the service affected by the
modification. We propose to check that interactions between collaborating roles
are logically consistent. The validation analysis consists of three main steps:

– We derive by projection the behaviour provided by a role on an association,
called an association role or a-role [8].

– We ensure that a-roles do not exhibit any anomalous behaviours. If needed,
we redesign service roles so that the roles and their projected a-roles are
well-formed.

– We apply compatibility checking on interacting a-roles. A simplified algo-
rithm can be applied when a-roles are well-formed.
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Our work has concentrated on safety properties, so avoiding bad behaviours:
unspecified signal reception, deadlock or improper termination. Solutions to ex-
tend the approach with progress and goal expressions to enable liveness proper-
ties to be checked has been proposed in [22] and [23].

3.1 Association Roles and Projection

Validation is applied on associations between service roles. When a role is as-
sociated with several other roles, validation is performed for each association.
In order to validate an association between two roles, we need to describe the
behaviour of the roles on that association. We introduce the concept of associa-
tion role (a-role) as the visible behaviour of a role on an association. An a-role
hides the internal behaviour of a role, and the interactions on other associations.
In fig. 5, the role “role 2” is involved in two associations and provides the two
a-roles. The a-role “a-role-2-1” should provide the same behaviour as “role 2”
on the association between “role 1” and “role 2”.

We have earlier described a projection transformation that can be used to
derive a-roles from service roles [8] and we have shown that this projection main-
tains the observable behaviour on associations between service roles provided
that the following design rules are enforced [5]:

– Roles must be save consistent: the saving of a signal is either re-iterated or
specified as input in the successor state(s).

– The modelling of alternative signal orderings using save must not overlap
with the modelling of concurrent behaviours. Concretely, a signal saved in
a state that can consume signals from the same association, should not be
retrieved in a state that can consume signals from other associations.

Our approach assumes that these two conditions are enforced. The first rule
contributes to collaboration compatibility (unspecified signal reception may oc-
cur if this rule is not applied). One may argue that the second rule reduces the
power of expression of SDL. Noting that save introduces complexity, we contend
that the rule contributes to simplify descriptions. Note that save is still allowed;
the rule only relates to special cases.

The a-roles obtained by projection are described as SDL state machines. As
a-roles are restricted to interaction behaviour, full SDL is not needed. Some
syntactical extensions to the SDL notation are introduced in order to abstract
non-observable behaviours. However, the semantics of SDL remains unchanged.
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Fig. 6. Removing input ambiguity

3.2 Removing Anomalous Behaviours

A-role graphs are simpler than service role graphs and thus easier to comprehend.
As explained in [8], the review of a-role graphs enables the designer to detect
anomalous behaviours:

– Ambiguous behaviours take place when an external observer is not able to
determine which environment behaviour is expected by an a-role. For exam-
ple, the observer cannot determine whether or not a role expects an input,
or which input is accepted.

– Conflicting behaviours occur when the behaviours of an a-role and its com-
plementary a-role (the a-role on the other end of the association) diverge.

Ambiguous and conflicting behaviours are usually symptoms of errors. We
propose a set of design rules [5] that, when followed, enable the designer to
develop well-formed state machines, where anomalous behaviours do not exist.

Input ambiguity and re-design are illustrated in fig. 6. The initial service role
is shown on the left hand side; the behaviours not visible on the association
to be validated are represented by dashed symbols. The initial a-role exhibits
input ambiguity: an external observer cannot determine which input behaviour
is expected after the sending of signal “A” and hence unspecified reception is
possible. The initial role should be re-designed. For example, distinct signals
may be sent before entering state “2” and “3” as shown on fig. 6.

The resolution of conflicting behaviour is illustrated in fig. 7. As a-roles com-
municate asynchronously, they perceive the occurrence of communication at dif-
ferent points of time. Reception is perceived some time after sending. In fig. 7,
both roles may take the initiative to send, leading to conflicting behaviours. The
roles should be able to detect and resolve such conflicts. An example of con-
flict resolution is shown in fig. 7. Other conflict resolution patterns are proposed
in [5].

The proposed design rules promote quality in terms of design errors being
removed. One may argue that these rules reduce the expressive power of SDL.
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Fig. 7. Resolving a conflicting behaviour

We contend that they do not restrict this power of expression, provided one
wishes to design correct services. The design rules aim at eliminating logical
interaction errors. They make it difficult to develop incorrect services, and thus
they are beneficial for all designers. As we aim at developing flexible and re-
configurable services, service roles should not contain behaviours that cannot be
explored in a safe way, and developers should design roles that other developers
have confidence in.

3.3 Compatibility Checking

Compatibility checking applies to complementary a-roles on an association. As
a-roles are modelled using SDL, the reachability analysis techniques developed
for state machines can be applied to a-roles [11]. However, we are able to apply a
simplified algorithm provided that the design rules defined to remove anomalous
behaviours have been followed.

Our compatibility checking algorithm is a simplification compared to reach-
ability analysis in the following ways:
– As conflicting behaviours are removed, each branch in a graph following a

mixed initiative state (a state where both input and output are possible) can
be checked against a single branch in the complementary graph.

– The merging of graph branches following equivoque transitions (similar tran-
sitions that lead to distinct behaviours), is performed before compatibility
checking. We have shown the merging transformation maintains the observ-
able association behaviour provided that equivoque transitions leading to
ambiguous behaviours have been removed [5]. Subsequent to merging, a
branch in the graph that would be checked against several branches in the
complementary graph before merging, can be checked against a single branch
after merging.

– Following the two previous points, no message queue is needed to perform
the analysis. The algorithm only requires a save signal queue.
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The approach also leads to a reduction of the global state space:
– The analysis is performed on projection of roles, not on roles. The a-roles

have less states that roles. The reduction achieved here is a factor of 10.
– The algorithm does not make use of a message queue. The number of signals

in the save queue normally remains low as the analysis is restricted to one
association. The reduction achieved here is significant: a factor of 106.

3.4 Discussion

Simplification is achieved by emphasizing the details significant to the purpose
of validation of the interfaces, and hiding other details. Simplification, however,
causes some shortcomings that are explained in this section.

Over-Specification. Internal role decisions and signals on non-visible associa-
tions are hidden by projection. In some cases, however, decisions and signals on
non-visible associations are observable from complementary service roles:
– There may exist dependencies between decisions across roles.
– There may exist dependencies between interactions on distinct associations.

By ignoring these dependencies, projection may lead to a non-deterministic
a-role behaviour and ambiguity. Our approach encourages the developer to re-
design service roles in those cases. When doing so, the new role is over-specified:
behaviour is added that is not absolutely necessary.

An example is given in fig. 8. The sequence diagram shows that interactions
between the roles (“R1”, “R2”) and (“R1”, “R3”) are dependent. Alternative
behaviours may be taken after a decision by “R1”. The state diagram illustrates
that the dependency is hidden by the projection of “R2” on the association
between “R2” and “R3”. This leads to input ambiguity. Our design rules requires
“R2” to be re-designed so that ambiguity is removed. After receiving “A”, “R2”
should be prepared to receive both “B” and “C” from “R3”: the states “3” and
“4” may be merged. Furthermore, backward save consistency should be enforced,
and the state “2” should be able to save “B” and “C”. After such re-design, the
role “R2” is overspecified.

Over-specification leads to more complex role state graphs. However, over-
specification is harmless with respect to compatibility. It enforces the designer to
produce robust specifications towards modifications of collaborating roles that
influence dependencies between associations.

Second Order Errors. The projection of roles lead to graphs that may contain
spontaneous transitions (t-transitions) that cannot be removed from the a-role
transition chart by refinement (by minimization or gathering as presented in
[8]). These t-transitions are symptoms of errors. Without the knowledge of the
behaviour occurring on other associations, we are not able to decide whether or
not those represent errors. The t-transitions may be symptoms of second order
errors.

An example is given in fig. 9. A “request-answer” pattern is applied between
three roles. We assume that the requesting machine cannot proceed before the
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request has been answered. The sequence diagram shows that the interactions
between “R1”, “R2” and “R3” lead to deadlock. The state diagram of the a-role
“R1 observed from R3” depicts a symptom of error: a t-transition derived from
the projection of the non-visible signal “Answer-1” between state “2” and “3”.
We cannot decide whether there is an error or not by only analyzing the a-role.
Neither can we determine the cause of error, if any. Our analysis helps to identify
potential problems, but in this case it cannot solve them. A closer analysis of
the service roles is required in such cases.
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4 Role Composition and Validation

The second axis of composition deals with the composition of collaborations in
order to obtain more complex collaborations. This requires a coordinated verti-
cal composition of the roles. The aim of validation along the vertical composition
axis is to ensure that roles are consistently composed across components leading
to consistent interactions between composite roles. We assume that the elemen-
tary roles being composed interact consistently; this can be checked by applying
the techniques presented in section 3.

As role composition is modelled using identical mechanisms to the modelling
of elementary component roles, the validation techniques proposed for elemen-
tary collaborations can be exploited in the validation of composite collabora-
tions. Especially, the techniques apply unchanged to the sequential composition
of roles as this form of composition is modelled using composite states in the
same way as the modelling of elementary roles [7]. Concurrent composition intro-
duces new associations that are validated separately, also using the techniques
for the validation of elementary collaborations.

4.1 Sequential Collaboration Composition

We first consider roles that are composed sequentially. This is illustrated in
fig. 10. In that example, the composite collaboration consists of three collabo-
rations that involve three components. One of the components is not involved
in the second phase of the composite collaboration. The composite role “A” fol-
lowed by “D” followed by “G” is modelled using composite states in a similar
way as the elementary roles “A”, “D” and “G”. So are the other composite roles.

We have assumed that the elementary collaborations are consistent, thus we
know that the elementary roles execute consistently until they terminate, pro-
vided that they start executing in a coordinated way. Note that the detection of
improper termination is of special interest with respect to sequential role compo-
sition: a collaboration should terminate properly before a successor collaboration
starts. Inconsistency may then be introduced by composition if some transition
from a role to its successor leads to an uncoordinated start of execution of the
successor roles. Two kinds of non-coordinated start may happen:
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– Interacting roles do not start executing in a synchronized way. In that case, a
signal may be sent to a complementary role that has not yet started, leading
to unspecified signal reception.

– Interacting roles are entered through inconsistent entry conditions.

Unsynchronized Start. As roles are composed sequentially, roles start execu-
tion when their predecessors terminate. Thus non-simultaneous execution start
occurs when the predecessor roles, if any, do not terminate in a synchronized
way. A simple approach is to constrain roles not to start before all predecessors
have terminated. However termination is not always observable, as illustrated in
fig. 11.

In order to avoid unspecified signal reception in the transition between com-
posed roles, we introduce a design rule that forces roles to be “backward save
consistent”: signals specified as input or save in the initial state of a role should
be saved in the predecessor role(s). Figure 12 illustrates that rule. We have
shown that when this design rule is applied, unspecified signal reception due to
non-simultaneous execution start does not occur [5].
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Inconsistent Entry Conditions. Inconsistency may be introduced when in-
teracting roles are entered through inconsistent entry conditions. Successor roles
may either be triggered:

– spontaneously – as part of a logical sequence of actions of the composite role.
In that case we simply verify that the entry conditions of elementary roles
are consistent. As elementary roles have been validated, consistent entries
between interacting a-roles have been identified; or

– implicitly – by signal triggering. The techniques developed for validating
elementary collaborations apply.

Extended Forms of Sequential Composition. Guarded sequential composi-
tion, choice and disabling are extended forms of sequential composition. As these
composition forms are modelled using identical mechanisms as the modelling of
elementary roles, the techniques developed for the validation of elementary role
collaborations apply. This means that we use the projection technique on the
composite role obtained from the elementary role state machines without con-
sidering the details described by the elementary role state machines.

4.2 Concurrent Collaboration Composition

In this section, we consider that elementary roles are composed concurrently.
This is illustrated in fig. 13. In that example, the composite collaboration consists
of two collaborations that involve three components. The concurrent roles may
execute more or less dependently. Here the roles “A” and “C” are dependent.

Concurrent collaboration composition introduces new associations that are
validated separately. In that way, no new mechanism is needed in the validation
analysis.

Dynamic Role Composition. Dynamic role composition can be modelled by
the creation of process agents at run-time. Following the dynamic composition
of roles, new associations are added at run-time.

The projection transformation was initially defined so that creation is consid-
ered to be an internal action and thus hidden by projection. In other words, the
start of interaction between a creator role and a created role was not described
in the a-roles derived from the creator and created roles; thus the dependency
between the creator and created roles was hidden by projection. As explained
in section 3.4, hiding dependencies may lead to over-specification. In order to
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avoid over-specification of the creator and created roles, the projection has been
re-defined so that the create operation is maintained in the projection on the
association the create relates to.

That redefinition does not however remove any over-specification following
dynamic creation. When a third role that is neither creator nor created somehow
depends on the creation, for example a role bound to a role created dynamically,
that third role may be over-specified when following the design rules proposed
by our approach.

5 Experimentation

The proposed validation approach has been manually applied on simple service
examples. It has not yet been applied on a large prototype or industrial case.
However, our experience from system design and tool design has been used as
input and references to ensure relevance and feasibility of the results [6, 10].

A major barrier for starting a larger experiment study is that no tools yet
are available that support SDL-2000, and thus SDL composite states and agents.
It seems that the SDL tool providers focus on the simplification of SDL rather
than on the development of SDL-2000 tools.

As UML was recently extended with concepts that support the modelling
of active objects, we now concentrate on UML. UML profiles for SDL are un-
der development. The a-role projection and refinement transformations, and the
validation algorithms have been implemented [2, 12]. The integration of the val-
idation tools with UML 2.0 modelling tools that support UML active objects is
also challenging as no UML 2.0 tool support both active objects and XMI yet.

6 Related Work

The analysis of finite state distributed systems is usually based on the con-
struction of a global state graph. A main problem in this approach is that the
complexity of the global state graph grows exponentially with the number of
states of the constituting state machines, and the graph becomes often too large
for exhaustive analysis. This is known as the state space explosion problem.
Several techniques have been proposed in order to reduce the complexity of the
analysis either based on abstraction of the system to be analysed [3, 15], or on
reduction of the global state graph [11]. Other techniques exploit the composi-
tional properties of distributed systems, and decompose the analysis of a system
into the analysis of the system components [4, 9]. We exploit both the techniques
of system abstraction and system decomposition. The approaches described in
the literature usually use mathematical formalisms that require specialist com-
petence that normally is not available in an industrial context. We believe that
our approach, although thoroughly justified, remains easy to understand and
use. As pointed out [3], little work is dedicated to abstracting state machines
or SDL. Abstraction techniques are provided for FSMs but not for the more
complex structure of SDL.
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Various architecture description languages (ADLs) have been proposed to
model architectural components and overall system interconnection structure [17].
Of interest for our work are ADLs defined by formal syntax and semantics that
allow the analysis of systems. Describing component interfaces and their exter-
nal behaviour [16] and the semantics of architectural connections [1] are major
issues. Surprisingly, these do not discuss how component interfaces are derived
from components. Similarly, [14] proposes a component-based analysis where in-
terfaces are described using interface automata, but fails to explain the relation
between interfaces and components. Our work defines a projection transforma-
tion that ensures that component interfaces exhibit the same behaviour as the
components they are derived from.

7 Conclusion

This paper has presented a compositional approach to service validation. The
validation techniques apply to systems specified using state machines and asyn-
chronous communication, and aim at checking the compatibility of interactions
between service roles played by components. We exploit the compositional prop-
erties of systems and propose two simplification schemes:

– Rather than analyzing a whole system, we analyze service interactions be-
tween pairs of components. Interaction behaviours are derived from compo-
nent behaviours by projection. We define a projection transformation that
only retains the aspects significant for the purpose of validation of interac-
tions.

– Validation is be applied incrementally. Elementary collaborations between
components are first validated, and then the composite collaborations com-
posed from elementary collaborations, etc.

These simplification schemes make it possible to analyze larger systems. Analysis
does not require as large global state spaces as traditional reachability analysis
techniques.

Our approach provides support, helping to detect and remove ambiguous and
conflicting behaviours, and thus develop well-formed state machines. We define
design rules that promote quality: many design errors can be removed at an
early stage, even prior to compatibility checking.

Finally, we have tried to develop techniques that the developers can easily
understand and apply constructively during design. We use the same language
for describing association behaviours as the developers use for modelling the
component behaviours (SDL). All reasoning is performed using the concepts of
the modelling language.

Acknowledgments. This work has been done as part of the Plug-and-Play
project supported by the Norwegian Foundation for Research (NFR).
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Abstract. Scenario-based specifications such as message sequence charts
(MSCs) offer an intuitive and visual way of describing design require-
ments. As one powerful formalism, Petri nets can model concurrency
constraints in a natural way, and are often used in modelling system
specifications and designs. Since there are gaps between MSC models and
Petri net models, keeping consistency between these two kinds of models
is important for the success of software development. In this paper, we
use Petri nets to model concurrent systems, and consider the problem of
checking Petri nets for scenario-based specifications expressed by mes-
sage sequence charts. We develop the algorithms to solve the following
two verification problems: the existential consistency checking problem,
which means that a scenario described by a given MSC must happen dur-
ing a Petri net runs, or any forbidden scenario described by a given MSC
never happens during a Petri net run; and the mandatory consistency
checking problem, which means that if a reference scenario described
by the given MSCs occurs during a Petri net run, it must adhere to a
scenario described by the other given MSC.

1 Introduction

Scenarios are widely used as a requirements technique since they describe con-
crete interactions and are therefore easy for customers and domain experts to
use. Scenario-based specifications such as message sequence charts offer an in-
tuitive and visual way of describing design requirements. They are playing an
increasingly important role in specification and design of systems. Such specifi-
cations focus on message exchanges among communicating entities in real-time
and distributed systems.
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Message sequence charts (MSCs) [1] is a graphical and textual language for
the description and specification of the interactions between system compo-
nents. The main area of application for MSCs is as overview specifications of
the communication behavior of real-time systems, in particular telecommunica-
tion switching systems.

Petri Nets [2] is a formal and graphically appealing language, which is ap-
propriate for modelling systems with concurrency and resource sharing. There
are plenty of applications of Petri Nets in modelling system specifications and
designs.

We often use MSCs and Petri nets together in a software project [3-5]. Usually,
MSCs and Petri nets are used in different software development steps. Even
when used in the same step, such as requirements analysis, MSCs are usually
used to describe the requirements provided directly by the customers, while Petri
nets are used to model the workflow synthesized by the domain and technical
experts. Since there are gaps between MSC models and Petri net models, keeping
consistency between these two kinds of models is important for the success of
software development.

In this paper, we consider the problem of checking concurrent system designs
modelled by Petri nets for scenario-based specification expressed by MSCs. We
develop the algorithms to solve the following two verification problems: the ex-
istential consistency checking problem, which means that a scenario described
by a given MSC must happen during a Petri net run, or any forbidden sce-
nario described by a given MSC never happens during a Petri net run; and the
mandatory consistency checking problem, which means that if a reference sce-
nario described by the given MSCs occurs during a Petri net run, it must adhere
to a scenario described by the other given MSC.

The paper is organized as follows. In the next section, we introduce MSCs,
and use them to represent scenario-based specifications. In section 3, we review
the definition and some basic properties of Petri nets. The solutions are given
in Section 4 and 5 respectively to the existential and mandatory consistency
checking of Petri nets for scenario-based specifications expressed by MSCs, and
the detailed proofs of the theorems are omitted in these two sections because
of space consideration. The related works and some conclusions are given in the
last section.

2 Message Sequence Charts and Scenario-Based
Specifications

MSCs represent typical execution scenarios, providing examples of either nor-
mal or exceptional executions of the proposed system. The MSC standard as
defined by ITU-T in Recommendation Z.120 [1] introduces two basic concepts:
basic MSCs (bMSCs) and High-Level MSCs (hMSCs). A bMSC consists of a
set of instances that run in parallel and exchange messages in a one-to-one,
asynchronous fashion. Instances usually represent process instances, and so are
called processes in this paper. An hMSC graphically combines references to bM-
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Fig. 1. An MSC describing the railroad crossing system

SCs to describe parallel, sequence, iterating, and non-deterministic execution of
the bMSCs. In this paper we just consider bMSCs which are used to represent
scenario-based specifications. For example, an MSC is depicted in fig. 1, which
describes a scenario about the well-known example of the railroad crossing sys-
tem in [6]. This system operates a gate at a railroad crossing, in which there are
a railroad crossing monitor and a gate controller for controlling the gate. When
the monitor detects that a train is arriving, it sends a message to the controller
to move down the gate. After the train leaves the crossing, the monitor sends a
message to controller to open the gate.

The semantics of an MSC essentially consists of sequences (of traces) of mes-
sages that are sent and received among the concurrent processes in the MSC. The
order of communication events (message sent or received) in a trace is deduced
from the visual partial order determined by the flow from top to bottom within
each process in the MSC along with a causal dependency between the events
of sending and receiving a message [1, 7, 8, 9]. In accordance with [7], without
losing generality, we assume that each MSC corresponds to a visual order for a
pair of events e1 and e2 such that e1 precedes e2 in the following cases:

– Causality: A send event e1 and its corresponding receive event e2.
– Controlability: The event e1 appears above the event e2 on the same pro-

cess line, and e2 is a send event. This order reflects the fact that a send event
can wait for other events to occur. On the other hand, we sometimes have
less control on the order in which receive events occur.

– Fifo order: The receive event e1 appears above the receive event e2 on the
same process line, and the corresponding send events e′1 and e′2 appear on a
mutual process line where e′1 is above e′2.

For checking scenario-based specifications expressed by MSCs, we formalize
MSCs as follows.
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Definition 1. An MSC is a five-tuple D = (P,E,M,L, V ) where

– P is a finite set of processes.
– E is a finite set of events corresponding to sending a message and receiving

a message.
– M is a finite set of messages. For any message g ∈ M , let g! and g? represent

the send and the receive for g respectively. For any e ∈ E, it is corresponding
to a send or receive for a message g, denoted by φ(e) = g! or φ(e) = g?.

– L : E → P is labelling function which maps each event e ∈ E to a process
L(e) ∈ P .

– V is a finite set whose elements are of the form (e, e′) where e and e′ are in
E and e′ �= e, which represents a visual order displayed in D.

��
We use event sequences to represent the traces of MSCs which are correspond-

ing to the behavior of MSCs. Any event sequence is of the form e0ˆe1ˆ . . . ˆem,
which represents that ei+1 takes place after ei for any i (0 ≤ i ≤ m − 1).

Definition 2. Let D = (P,E,M,L, V ) be an MSC. An event sequence of the
form e0ˆe1ˆ . . . ˆem is a trace of D if and only if the following conditions hold:

– all events in E occur in the sequence, and each event occurs only once
{e0, e1, . . . , em} = E and ei �= ej for any i, j (0 ≤ i < j ≤ m); and

– e1, e2, . . . , em satisfy the visual order defined by V
for any ei and ej , if (ei, ej) ∈ V , then 0 ≤ i < j ≤ m. ��

Corresponding to the sends or receives for messages, we can transform the traces
of an MSC into the message trails of the MSC.

Definition 3. Let D = (P,E,M,L, V ) be an MSC. For any trace of D of the
form e0ˆe1ˆ . . . ˆem, replacing each ei with φ(ei) (0 ≤ i ≤ m), we get a sequence
φ(e0)ˆφ(e1)ˆ . . . ˆφ(em) of the sends or receives for a message in M , which is a
message trail of D. ��
Notice that for an MSC D, all events in a trace of D are distinct, but there
may be the same events in a message trail of D which are corresponding to the
message sends or receives. For example, the events e1 and e13 are distinct in the
MSC depicted in fig. 1, but φ(e1) = φ(e13) = Arriving!.

3 Petri Nets

The Petri nets we consider in this paper are classical 1-safe systems.

Definition 4. A Petri net is a four-tuple, N = (P, T, F, μ0), where

– P = {p1, p2, . . . , pm} is a finite set of places;
– T = {t1, t2, . . . , tn} is a finite set of transitions (P ∩ T = ∅);
– F ⊂ (P × T ) ∪ (T × P ) is the flow relation;
– μ0 ⊂ P is the initial marking of the net.
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Fig. 2. A Petri net

A marking μ of N is any subset of P . For any transition t, •t = {p ∈ P |(p, t) ∈ F}
and t• = {p ∈ P |(t, p) ∈ F} denote the preset and postset of t, respectively. A
transition t is enabled in a marking μ if •t ⊆ μ; otherwise, it is disabled. Let
enabled(μ) be the set of transitions enabled in μ. ��

As a tool used for modelling systems, the transitions of Petri nets represent
the potential events in the systems. Since in this paper we consider the problem
of checking Petri nets for scenario-based specifications expressed by MSCs, for
any Petri net we consider in this paper, each transition t is labelled with an
event which may be corresponding to a message send or receive in a MSC, which
is denoted by ϕ(t). That is, for an MSC D = (P,E,M,L, V ), for a transition
t of a Petri net, there may be a message g ∈ M and an event e ∈ E such that
ϕ(t) = g! = φ(e) or ϕ(t) = g? = φ(e). For example, a Petri net is depicted in
fig. 2.

For the firing of a transition to be possible, two conditions must be satisfied.

Definition 5. A transition t may fire from marking μ if and only if the following
two conditions hold: (1) t ∈ enabled(μ), and (2) (μ − •t) ∩ t• = ∅. ��
The first condition is the normal firing condition for Petri nets. The second
condition requires contact-freeness. The new state is then calculated as follows.

Definition 6. When transition t fires from marking μ, the new marking μ′ is
given as follows: μ′ = (μ − •t) ∪ t•. ��
Note that since we assume contact-freeness, a self-loop will not be enabled. The
behaviour of a Petri net is described in term of runs.



Consistency Check of Concurrent Models for Scenario-Based Specifications 303

Definition 7. A run of a Petri net is a finite or infinite sequence of markings
and transitions

σ = μ0
t0−→ μ1

t1−→ · · · tn−1−→ μn
tn−→ . . .

such that μ0 is the initial marking of the net, ti ∈ enabled(μi) for any i (i ≥ 0),
and that μi = (μi−1 −• ti−1) ∪ t•i−1 for any i (i ≥ 1). ��

4 Existential Consistency Checking

In this section, we consider the existential consistency checking of Petri nets for
scenario-based specifications represented by MSCs. The existential consistency
checking problem is to check if a scenario described by a given MSC must happen
during a Petri net run, or that any forbidden scenario described by a given MSC
never happens during a Petri net run, which is depicted in fig. 3.

� �

� � � �

�
�
�

�

D D

D D

Fig. 3. Existential Consistency Checking

Now we define formally the existential consistency checking problem. Let
D = (P,E,M,L, V ) be an MSC, N be a Petri net, and σ be a run of N of the

form μ0
t0−→ μ1

t1−→ · · · tn−1−→ μn
tn−→ μn+1. For any subsequence σ1 in σ of the

form σ1 = μi
ti−→ μi+1

ti+1−→ · · · tj−1−→ μj
tj−→ μj+1 (0 ≤ i < j ≤ n), since each

transition tk is labelled with an event ϕ(tk) (i ≤ k ≤ j), we get a sequence τ of
events: τ = ϕ(ti)ˆϕ(ti+1)ˆ . . . ˆϕ(tj). By removing any ϕ(tk) (i ≤ k ≤ j) from
τ which is not corresponding to the send or receive for a message in M , we get
an event sequence τ1 = e0ˆe1ˆ . . . ˆem (m ≤ j − i + 1). If τ1 is a message trail of
D, then we say that a scenario described by D occurs in the run σ, and that σ1

is an image of D in σ. If τ1 is a message trail of D, ϕ(ti) = e0, and ϕ(tj) = em,
then we say that σ1 is an exact image of D. For a Petri net N , for an MSC D,
the existential consistency checking problem is to check if there is a run of N
where a scenario described by D occurs.

We know that for a Petri net N , there could be infinite runs, and the number
of the runs could be infinite. In the following we show how to solve the problem
based on the investigation of a finite set of finite runs.

For any Petri net N , for any MSC D = (P,E,M,L, V ), let Δ(N,D) be the
set of the runs of N which are of the form

σ = μ0
t0−→ μ1

t1−→ · · · tm−1−→ μm
tm−→ · · · tn−1−→ μn

tn−→ μn+1 ,
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where

– all μi (0 ≤ i ≤ m) are distinct;

– μm
tm−→ μm+1

tm+1−→ · · · tn−1−→ μn
tn−→ μn+1 is an exact image of D; and

– for any μi and μj (m < i < j < n), if there is not any tk(i ≤ k ≤ j) such
that ϕ(tk) = φ(e) (e ∈ E) then μi �= μj .

It is clear that the number of the runs in Δ(N,D) is finite, and that each run
in Δ(N,D) is finite.

Theorem 1. Let N be a Petri net, and D be an MSC. Then there is a run of
N where a scenario described by D occurs if and only if Δ(N,D) �= ∅. ��

currentpath := 〈μ0〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
if node is such that the run corresponding to currentpath

is in Δ(N, D)
then return true;
if node is such that the run corresponding to currentpath

is a prefix for Δ(N, D)
then append node to currentpath;

end
until currentpath = 〈〉;
return false.

Fig. 4. Algorithm for existential consistency checking

For a Petri net N , for an MSC D, a run σ of N is a prefix for Δ(N,D) if it
may be extended into a run which is in Δ(N,D), i.e. there could be a sequence
σ1 of markings and transitions such that σˆσ1 is in Δ(N,D). Based on the above
theorem, we can develop an algorithm to check the existential consistency of a
Petri net N = (P, T, F, μ0) for an MSC D (see fig. 4). The algorithm traverses
the state space of N in a depth first manner starting from the initial node μ0.
The path in the state space that we have so far traversed is stored in the list
variable currentpath. For each new marking that we discover, we first check
whether it is such that the run corresponding to currentpath is in Δ(N,D). If
yes, then it means that a scenario described by D must happen during N runs,
and we are done. Then we check if the new marking that we discover is such that
the run corresponding to currentpath is a prefix for Δ(N,D). If yes, then we
add the new marking to the current path and start the search from it, otherwise
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we backtrack. If no run is discovered during the search which is in Δ(N,D),
then it means that any forbidden scenario described by D never happens during
N runs. The complexity of the algorithm is proportional to the number of the
prefixes for Δ(N,D) and to the size of the longest prefix for Δ(N,D).

5 Mandatory Consistency Checking

In this section, we consider the mandatory consistency checking of Petri nets for
scenario-based specifications represented by MSCs. The mandatory consistency
requires that if a reference scenario described by the given MSCs occurs during
a Petri net run, it must adhere to a scenario described by the other given MSC.
We consider the following three kinds of the mandatory consistency which are
depicted in fig. 5:

� �

�

� � � �� � � � � �

� � � �� �

Forward Mandatory Consistency Checking Backward Mandatory Consistency Checking

Bidirectional Mandatory Consistency Checking

D1 D3 D2

D1 D3 D2

D2D1 D1D2

D2D1 D1D2

⇒ ⇐

⇒ ⇐

Fig. 5. Mandatory Consistency Checking

– forward mandatory consistency: if a reference scenario described by a
given MSC D1 occurs during a Petri net run, then a scenario described by
the other given MSC D2 must follow immediately;

– backward mandatory consistency: if a reference scenario described by a
given MSC D1 occurs during a Petri net run, then it must follow immediately
from a scenario described by the other given MSC D2; and

– bidirectional mandatory consistency: if a reference scenario described
by a given MSC D1 occurs during a Petri net run and a reference scenario
described by another given MSC D2 follows, then in between these two sce-
narios, a scenario described by the third given MSC D3 must occur exactly.

5.1 Forward Mandatory Consistency Checking

For the forward mandatory consistency checking, a scenario-based specification,
denoted by SF (D1, D2), consists of two given MSCs D1 and D2, which requires
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that if a scenario described by D1 occurs in a run of a Petri net, then a scenario
described by D2 follows immediately (see fig. 5).

The satisfaction problem of a Petri net N for a scenario-based specification
SF (D1, D2) is defined formally as follows. Let D2 = (P2, E2,M2, L2, V2). N
satisfies SF (D1, D2) if any run σ of N of the form

σ = μ0
t0−→ μ1

t1−→ · · · tn−1−→ μn
tn−→ μn+1

satisfies the following condition:

– if there is a subsequence σ1 in σ of the form

σ1 = μi
ti−→ μi+1

ti+1−→ · · · tj−1−→ μj
tj−→ μj+1 (0 ≤ i < j ≤ n)

which is an exact image of D1, then for any subsequence σ2 in σ of the form

σ2 = μj+1
tj+1−→ μj+2

tj+2−→ · · · tk−1−→ μk
tk−→ μk+1 (j < k ≤ n)

where the number of μl (j < l ≤ k) satisfying ϕ(tl) = φ(e) (e ∈ E2) is |E2|,
it is an image of D2.

Now we try to solve the verification problem based on the investigation of a
finite set of finite runs. For any Petri net N , for any scenario-based specification
SF (D1, D2) where D1 = (P1, E1,M1, L1, V1) and D2 = (P2, E2,M2, L2, V2), let
Δ(N,SF (D1, D2)) be the set of the runs of N which are of the form

μ0
t0−→ μ1

t1−→ · · · tk−1−→ μk
tk−→ · · · tm−1−→ μm

tm−→ μm+1
tm+1−→ · · · tn−1−→ μn

tn−→ μn+1 ,

where

– all μi (0 ≤ i ≤ k) are distinct;

– μk
tk−→ μk+1

tk+1−→ · · · tm−1−→ μm
tm−→ μm+1 is an exact image of D1;

– for any μi and μj (k < i < j < m), if there is not any tl(i ≤ l ≤ j) such that
ϕ(tl) = φ(e) (e ∈ E1) then μi �= μj ;

– the number of μi (m < i ≤ n) satisfying ϕ(ti) = φ(e) (e ∈ E2) is |E2|;
– there are e ∈ E2 such that ϕ(tn) = φ(e); and
– for any μi and μj (m < i < j < n), if there is not any tl(i ≤ l ≤ j) such that

ϕ(tl) = φ(e) (e ∈ E2) then μi �= μj .

For any σ ∈ Δ(N,SF (D1, D2)) of the above form, we call the subsequence

μm+1
tm+1−→ μm+2

tm+2−→ · · · tn−1−→ μn
tn−→ μn+1 by the last segment of σ.

Theorem 2. A Petri net N satisfies a scenario-based specification SF (D1, D2)
if and only if for any run of N which is in Δ(N,SF (D1, D2)), its last segment is
an image of D2. ��

For a Petri net N , for a scenario-based specification SF (D1, D2), a run σ of
N is a prefix for Δ(N,SF (D1, D2)) if it may be extended into a run which is in
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currentpath := 〈μ0〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
if node is such that the run corresponding to currentpath

is in Δ(N,SF (D1, D2))
then
begin
check if the run corresponding to currentpath is such that
its last segment is an image of D2;
if no then return false;

end;
if node is such that the run corresponding to currentpath

is a prefix for Δ(N,SF (D1, D2))
then append node to currentpath;

end
until currentpath = 〈〉;
return true.

Fig. 6. Algorithm for forward mandatory consistency checking

Δ(N,SF (D1, D2)), i.e. there could be a sequence σ1 of markings and transitions
such that σˆσ1 is in Δ(N,SF (D1, D2)). Based on Theorem 2, we can develop
an algorithm to check if a Petri net N = (P, T, F, μ0) satisfies a scenario-based
specification SF (D1, D2) (see fig. 6). The algorithm traverses the state space of
N in a depth first manner starting from the initial node μ0. The path in the state
space that we have so far traversed is stored in the list variable currentpath.
For each new marking that we discover, we first check whether it is such that
the run corresponding to currentpath is in Δ(N,SF (D1, D2)). If so, we check if
the run corresponding to currentpath is such that its last segment is an image
of D2. If no, then it means that N does not satisfy SF (D1, D2), and we are
done. Then we check if the new marking that we discover is such that the run
corresponding to currentpath is a prefix for Δ(N,SF (D1, D2)). If yes, then we
add the new marking to the current path and start the search from it, otherwise
we backtrack. The complexity of the algorithm is proportional to the number
of the prefixes for Δ(N,SF (D1, D2)) and to the size of the longest prefix for
Δ(N,SF (D1, D2)).

5.2 Backward Mandatory Consistency Checking

For the backward mandatory consistency checking, a scenario-based specifica-
tion, denoted by SB(D1, D2), consists of two given MSCs D1 and D2, which
requires that if a scenario described by D1 occurs in a run of a Petri net, then
it must follow immediately from a scenario described by D2 (see fig. 5).
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The satisfaction problem of a Petri net N for a scenario-based specification
SB(D1, D2) is defined formally as follows. N satisfies SB(D1, D2) if any run σ

of N of the form σ = μ0
t0−→ μ1

t1−→ · · · tn−1−→ μn
tn−→ μn+1 satisfies the following

condition:

– if there is a subsequence σ1 in σ of the form

σ1 = μi
ti−→ μi+1

ti+1−→ · · · tj−1−→ μj
tj−→ μj+1 (0 ≤ i < j ≤ n)

which is an exact image of D1, then there is a subsequence σ2 in σ of the
form

σ2 = μk
tk−→ μk+1

tk+1−→ · · · ti−2−→ μi−1
ti−1−→ μi (0 ≤ k < i)

which is an image of D2.

Now we try to solve the verification problem based on the investigation of a
finite set of finite runs. For any Petri net N , for any scenario-based specification
SB(D1, D2) where D1 = (P1, E1,M1, L1, V1) and D2 = (P2, E2,M2, L2, V2), let
Δ(N,SB(D1, D2)) be the set of the runs of N which are of the form

μ0
t0−→ μ1

t1−→ · · · tk−1−→ μk
tk−→ · · · tm−1−→ μm

tm−→ · · · tn−1−→ μn
tn−→ μn+1 ,

where

– μm
tm−→ μm+1

tm+1−→ · · · tn−1−→ μn
tn−→ μn+1 is an exact image of D1;

– for any μi and μj (m < i < j < n), if there is not any tl(i ≤ l ≤ j) such that
ϕ(tl) = φ(e) (e ∈ E1) then μi �= μj ;

– for any μi and μj (0 ≤ i < j < m), if there is not any tl(i ≤ l ≤ j) such that
ϕ(tl) = φ(e) (e ∈ E2) then μi �= μj ; and

– if there is k (0 ≤ k < m) such that the number of μl (k ≤ l < m) satisfying
ϕ(tl) = φ(e) (e ∈ E2) is |E2|, then all μi (0 ≤ i ≤ k) are distinct.

For any σ ∈ Δ(N,SB(D1, D2)) of the above form, we call the subsequences of

the form μi
ti−→ μi+1

ti+1−→ · · · tm−1−→ μm (0 ≤ i < m) by the front segments of σ.

Theorem 3. A Petri net N satisfies a scenario-based specification SB(D1, D2)
if and only if for any run σ of N which is in Δ(N,SB(D1, D2)), there is a front
segment of σ which is an image of D2. ��

For a Petri net N , for a scenario-based specification SB(D1, D2), a run σ of
N is a prefix for Δ(N,SB(D1, D2)) if it may be extended into a run which is in
Δ(N,SB(D1, D2)), i.e. there could be a sequence σ1 of markings and transitions
such that σˆσ1 is in Δ(N,SB(D1, D2)). Based on Theorem 3, we can develop
an algorithm to check if a Petri net N = (P, T, F, μ0) satisfies a scenario-based
specification SB(D1, D2) (see fig. 7). The structure of the algorithm is the same
as the one of the algorithm depicted in fig. 6. The complexity of the algorithm
is proportional to the number of the prefixes for Δ(N,SB(D1, D2)) and to the
size of the longest prefix for Δ(N,SB(D1, D2)).
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currentpath := 〈μ0〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
if node is such that the run corresponding to currentpath

is in Δ(N,SB(D1, D2))
then
begin
check if the run corresponding to currentpath is such that
a front segment is an image of D2;
if no then return false;

end;
if node is such that the run corresponding to currentpath

is a prefix for Δ(N,SB(D1, D2))
then append node to currentpath;

end
until currentpath = 〈〉;
return true.

Fig. 7. Algorithm for backward mandatory consistency checking

5.3 Bidirectional Mandatory Consistency Checking

For the bidirectional mandatory consistency checking, a scenario-based specifi-
cation, denoted by SD(D1, D2, D3), consists of three given MSCs D1, D2, and
D3, which requires that if a scenario described by D1 occurs in a run of a Petri
net and a scenario described by D2 follows, then the run segment between these
two scenarios must be exactly corresponding to a scenario described by D3 (see
fig. 5).

The satisfaction problem of a Petri net N for a scenario-based specification
SD(D1, D2, D3) is defined formally as follows. N satisfies SD(D1, D2, D3) if for
any run σ of N of the form

μ0
t0−→ μ1

t1−→ · · · tk−1−→ μk
tk−→ · · · tl−1−→ μl

tl−→ · · · tm−1−→ μm
tm−→ · · · tn−1−→ μn

where all μi (l ≤ i ≤ m) are distinct, μk
tk−→ μk+1

tk+1−→ · · · tl−1−→ μl is an exact

image of D1, and μm
tm−→ μm+1

tm+1−→ · · · tn−1−→ μn is an exact image of D2, the
following condition holds:

– if there is no subsequence μi
ti−→ μi+1

ti+1−→ · · · tj−1−→ μj (l ≤ i < j ≤ m) which

is an image of D1 or D2, then μl
tl−→ μl+1

tl+1−→ · · · tm−1−→ μm is an image of
D3.

Now we try to solve the verification problem based on the investigation of
a finite set of finite runs. For a Petri net N , for a scenario-based specification
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currentpath := 〈μ0〉;
repeat

node := the last node of currentpath;
if node has no new successive node
then delete the last node of currentpath
else begin

node := a new successive node of node;
if node is such that the run corresponding to currentpath

is in Δ(N,SD(D1, D2, D3))
then
begin
check if the run corresponding to currentpath is such that
its middle segment is an image of D3;
if no then return false;

end;
if node is such that the run corresponding to currentpath

is a prefix for Δ(N,SD(D1, D2, D3))
then append node to currentpath;

end
until currentpath = 〈〉;
return true.

Fig. 8. Algorithm for bidirectional mandatory consistency checking

SD(D1, D2, D3) where D1 = (P1, E1,M1, L1, V1) and D2 = (P2, E2,M2, L2, V2),
let Δ(N,SD(D1, D2, D3)) be the set of the runs of N which are of the form

μ0
t0−→ μ1

t1−→ · · · tk−1−→ μk
tk−→ · · · tl−1−→ μl

tl−→ · · · tm−1−→ μm
tm−→ · · · tn−1−→ μn

where

– all μi (0 ≤ i ≤ k) are distinct;
– all μi (l ≤ i ≤ m) are distinct;
– μk

tk−→ μk+1
tk+1−→ · · · tl−1−→ μl is an exact image of D1;

– for any μi and μj (k < i < j < l), if there is not any ta(i ≤ a ≤ j) such that
ϕ(ta) = φ(e) (e ∈ E1) then μi �= μj ;

– μm
tm−→ μm+1

tm+1−→ · · · tn−1−→ μn is an exact image of D2;
– for any μi and μj (m < i < j < n), if there is not any ta(i ≤ a ≤ j) such

that ϕ(ta) = φ(e) (e ∈ E2) then μi �= μj ; and

– there is no subsequence μi
ti−→ μi+1

ti+1−→ · · · tj−1−→ μj (l ≤ i < j ≤ m) which is
an image of D1 or D2.

For any σ ∈ Δ(N,SD(D1, D2, D3)) of the above form, we call the subsequence

of the form μl
tl−→ μl+1

tl+1−→ · · · tm−2−→ μm−1
tm−1−→ μm by the middle segment of σ.

Theorem 4. Let N be a Petri net. N satisfies a scenario-based specification
SD(D1, D2, D3) if and only if for any run of N which is in Δ(N,SD(D1, D2, D3)),
its middle segment is an image of D3. ��
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For a Petri net N , for a scenario-based specification SD(D1, D2, D3), a run σ
of N is a prefix for Δ(N,SD(D1, D2, D3)) if it may be extended into a run which is
in Δ(N,SD(D1, D2, D3)), i.e. there could be a sequence σ1 of markings and tran-
sitions such that σˆσ1 is in Δ(N,SD(D1, D2, D3)). Based on Theorem 4, we can
develop an algorithm to check if a Petri net N = (P, T, F, μ0) satisfies a scenario-
based specification SD(D1, D2, D3) (see fig. 8). The structure of the algorithm is
the same as the one of the algorithm depicted in fig. 6. The complexity of the al-
gorithm is proportional to the number of the prefixes for Δ(N,SD(D1, D2, D3))
and to the size of the longest run in Δ(N,SD(D1, D2, D3)).

6 Related Work and Conclusion

In this paper, we solve the consistency checking problems of concurrent system
designs modelled by Petri nets for scenario-based specifications expressed by
MSCs. The algorithms we present can be used to check if a scenario described
by a given MSC must happen during a Petri net run, that any forbidden scenario
described by a given MSC never happens during a Petri net run, and if a Petri
net satisfies a mandatory consistency specification expressed by MSCs which
requires that if a reference scenario described by the given MSCs occurs during
the Petri net run, it must adhere to a scenario described by the other given MSC.

To our knowledge, there has been a lack of publication on consistency checking
of Petri nets for scenario-based specifications expressed by MSCs. There has been
work on checking the state-transition graphs for the properties expressed by tem-
poral logics (CTL, LTL)[10]. It is well known that the state-transition graphs and
the Petri nets considered in this paper can be interchangeable, and even there ex-
ists an automatic translation of UML statecharts and sequence diagrams [11] into
Generalized Stochastic Petri Nets [12], which means that theoretically the prob-
lems considered in this paper can be solved by converting to the corresponding for-
malisms. However, on the one hand, converting from one formalism to the other
often leads to a significant enlargement of the state space. On the other hand, the
specifications expressed by MSCs are much more acceptable for the industry than
the ones expressed by temporal logic. Work close to our own is described in [13]
where a tool, HUGO, is designed to check if the interactions expressed by an UML
collaboration diagram can indeed be realized by a set of UML state machines in
which state machines are compiled into SPIN [14] input model and collaboration
diagrams are translated into sets of Büchi automata, and SPIN is called for the
verification. Compared to that work, the specifications expressed by MSCs consid-
ered in this paper aremore expressive, and our approach leads to direct and efficient
implementation. Live sequence charts [15, 16] is a more expressive formalism to de-
scribe the mandatory consistency specifications considered in this paper, but it is
less popular in the industry.

The algorithms presented in this paper have been implemented in a tool
prototype. The tool is implemented in Java, and its graphical interface allows the
users to construct, edit, and analyze MSCs and Petri nets interactively. The tool
interface can also read .mdl files of UML sequence diagrams in Rational Rose.
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Based on the work in this paper, we are solving the timing consistency checking
problem of time Petri nets [17] for scenario-based specifications expressed by
MSCs with timing constraints, which requires that if a scenario described by a
given MSC occurs during a time Petri net run, the timing constraints enforced
to the MSC must be satisfied.
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Abstract. SDL claims to be a language for the description of open sys-
tems, allowing the integration of other components into an SDL system
and that of an SDL system as a mere component into a greater unit. In-
deed, SDL provides the possibility for the interaction of a system with its
environment. Signals can be exchanged with the environment and in addi-
tion the developer may hide arbitrary actions inside external procedures.

Code generators are widely in use to produce runnable code from an
SDL system description, decreasing faults and increasing flexibility. But
changes in or changes of the communication protocol to the environment
still force a code generator to be adapted, costing precious resources.

This paper presents an automated code generation from SDL to C++,
which enables the flexible connection of various communication proto-
cols without changing the code generator or adding code manually. A
runtime library contains all necessary means for communication to the
environment, an approach which has been tested using CORBA and Web
Services, but could be adapted easily to arbitrary protocols.

Problems with the choice of appropriate encodings seem to be solved
with the recommendation Z.104, which enables the specification of encod-
ings already in the SDL-2000 system. All results presented in this paper
are based on the experience gained in practice during several projects
using Cinderella SITE.

1 Introduction

SDL is well suited to design complex autonomous systems. A design progression
is supported over several levels of refinement and a concluding automated code
generation yielding executables is available at least for older versions of the
language. But in the domain of information technologies, how autonomous can
a system nowadays possibly be? Such a system consists of physically distributed
components, often mobile ones, which only used together to deliver a particular
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service. This requires heavy communication between the separated parts or with
central control units.

If the description of a system stems from one source, that is, if it has been de-
veloped in one piece by one company, it may be regarded as autonomous enough
and leaves only the problem of a later distribution. But far more commonly the
necessity is implied to reuse components already there, possibly originating from
another manufacturer. In the worst case these parts have been described with
a technique different from SDL or even without using any formal technique at
all. In addition, the system which is intended to be created may be in itself just
a component of a larger unit. Such a sub-system not only has to use particular
services from the environment, it also has to offer its own services to the outside
(the encompassing system).

SDL provides several language features which enable a system to interchange
information with the environment. Data can be delivered to the system as well
as originating from it, and external code can be invoked directly. These means
for describing interaction with the environment are of particular interest when it
comes to automated code generation. Then the question arises whether the sys-
tem description contains all the information necessary to generate an executable
which neatly fits into the desired environment without the need to manually edit
the code, to annotate the specification or to fall back to other tricks.

For many years already, automated code generation is one of the main fields
at the chair of systems analysis at Humboldt-Universität zu Berlin. This resulted
in the SDL compiler tools called SITE which have been successfully employed
in the development of various protocol stacks for IN switches at Siemens AG.
In this context the integration of SITE with the graphical tool Cinderella SDL
(called Cinderella SITE) proved to be prosperous. The aspiration is for new
levels of automation to make the process of software development controllable
for more complex and dynamic arrangements.

The ongoing standardization of formal languages gives us more powerful and
accurate means to express the desired interrelations. For instance, in the context
of embedding a system into its environment, the recently published recommenda-
tion Z.104 (an extension to SDL) now enables the signal encoding requirements
to be described explicitly in SDL [1].

This document is organized as follows. Section 2 reports on the state of the
SDL code generation at Humboldt-Universität in general and it sketches struc-
ture and strategy of the code generator SITE. Section 3 deals with the problem
encountered when executables should be produced from SDL descriptions to fit
into interactive environments, and lists and evaluates several approaches. Then
follows section 4, which presents the new approach chosen with SITE [2] to
provide flexible inter-system communication. Admittedly, that is shown to not
being the general solution. Section 5 attempts to summarize the requirements
on a method that could provide all the necessary means to enable fully auto-
matic code generation with respect to distribution and integration. A conclusion
finalizes the paper.
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2 The SDL Code Generator SITE

The code generator SITE is the result of many years of development in the area of
automated code generation from SDL. The tool processes SDL-96 [3] and ASN.1-
88 [4] in combined use [5] in textual notation. It consists of three components,
one of which analyzes the syntax, one analyzes the static semantics and one
generates C++ code. Accepting textual input allows the tool to be used both on
the command line and in combination with other applications. Previously SITE
has been integrated into Cinderella SDL [6]. That combination, called Cinderella
SITE, is able to generate executables from graphical SDL specifications.

The code generated from an SDL specification describes a rather abstract
level which shows strong similarities to SDL entities. It is based on classes and
macros defined in a runtime library, which provides the particular mechanisms
inherent to various SDL concepts. There we find base classes for the structural
elements (such as package, system, block, process, process set and procedure); for
signals; and for the data types of the package Predefined. Other classes will just
be instantiated in the code to represent more simple entities, such as channel,
signal route and gate. Figure 1 shows the mapping of some SDL entities to C++

classes and objects of the runtime library by example.

PongPing

Ping Pong

Table

ball1, ball2

signal ball1, ball2

S pingpong:SDLBlock

B ping:SDLBlock

SDLChannel(”Table”)

SDLSignalroute P pong:SDLProcess

System PingPong

S ball1:SDLSignal

Fig. 1. SITE mapping of SDL entities to C++ classes and objects

The separation into generated code and underlying library is a common ap-
proach. There are several reasons for not generating complete code.

keep generated code small. The less code has to be compiled, the faster be-
comes the compilation; binding libraries is much faster. In addition, the code
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generator is easier to maintain since it contains fewer lines of output and op-
erates on a higher level of code. The library is quite easy to maintain as well
since the code is thus better organized than it possibly could be as mere text
in a generator.

introduce an interface. Depending on the intended target environment, the
generated code can be combined with an adapted or completely different
runtime library. The code resulting from an SDL description always is the
same. So the code generator never has to be touched and changes can be
applied to the logical organized library.

The latest developments of SITE enable the same code resulting from one
SDL specification to be linked with various communication libraries (variants of
Selex, see section 4) to yield different executables. Each executable communicates
with the environment using the technique determined by the respective library.

Recently, Cinderella SITE has provided another possibility to accomplish
similar flexibility (see section 3.1). That approach defines an API which describes
the interface to the environment. Arbitrary implementations of that interface in
the form of dynamic libraries can be bound to the generated code, completely
independent of the communication techniques supported by SITE, overriding
them.

3 Interfaces of SDL Systems

Taking the final design step from a completed specification to its implementa-
tion, in particular by code generation, requires several parameters to be fixed
which have no place on an abstract level. Some of them concern the detailed in-
ternal behaviour of the resulting system such as concurrency, internal signalling,
timing, and process scheduling. Others can be regarded as independent from the
internals. They determine how the system communicates with its environment,
which communication protocol is used and which data encoding. These latter
parameters are subject to the following inspection.

If an open SDL system, either as part of a decomposition or naturally open,
is to be embedded into a concrete environment this usually means that the
resulting target code must be combinable with implementations already there.
SDL is a language for design and description on an abstract level and therefore
it has no concepts to express implementation details. That raises the question
whether SDL is well suited to address the communication issue. How could a neat
integration of the generated code be obtained? Which possibilities are available
and what are the disadvantages?

3.1 Ways for Connecting a System

The problem of integrating the code generated from an SDL system description
is solved in every single case, somehow. Some ways are propagated and others
could be imagined. In the following, several of them are briefly described and
commented on.
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Postprocessing the Generated Code. Automated code generation produces
source code from an SDL description. It contains some empty classes or functions
which the implementor completes manually. These functions form the interface
between the generated code and the code which is specific to a platform or ap-
plication. They could be used for instance to drive hardware gadgets, to manage
the communication to remote hosts, or to integrate particular libraries.

This approach is sufficiently customizable and does not need support through
SDL. But unfortunately, the implementor gets loaded with the burden of produc-
ing a highly complex part of the code himself. That is time consuming and error
prone. In addition, similar work has to be done every time the SDL specification
changes sufficiently.

Enriching the SDL Specification. An SDL description is augmented with
special comments which yield control information for a particular code generator
tool. Such comments could actually control the flow of code generation or simply
are source code includes which are directly copied to the target code. Most of
the tools provide such magic to ease the embedding, for instance the SDL to
Java Translator [7] (SITE for other purposes, too). Thus a specification contains
all the necessary information but is bound to a particular tool: the one which
can interpret the bonus information correctly. In the worst case such enrichment
of SDL makes the specification unreadable to other utilities (and maybe their
users).

External Procedures. It is possible in SDL to leave functionality unspecified,
to leave well defined holes in the specification. This is done by defining external
procedures. They can be called like other procedures, but have no body attached.
A C++ code generator would just generate the function declaration without the
associated definition. The implementor gets the chance to insert arbitrary code
in that place. Thus an algorithm (which might be intricate to describe in SDL)
could be concisely expressed in some other source code – a recommended use [8].

But everything is left open to to the programmer. In particular, remote hosts
could be accessed through some communication technique. But that is com-
pletely hidden from the SDL designer and conceals the danger of such a call.
In the case of failure the entire system could be brought to a standstill in the
middle of two states. It is hard to take into account such hidden communication.
To limit the communication of agents to explicit signal exchange is a completely
reasonable proposal [9].

Signals to the Environment. An SDL system may send signals to an un-
specified environment and receive signals from there, too. In this way data may
leave and enter the system at specified entry points, the gates. A code generator
could treat all such occurrences of environment signals alike and transform them
according to the the communication technique which has been chosen automat-
ically or during configuration.

Such transmission of all signals to the outside is limited to one protocol, but
requires neither changes in the SDL nor additional information. If different gates
should use different transmission techniques the problem of binding additional
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information to SDL is there again. Anyway, explicitly exchanging signals with
the environment extends the well-defined inner system communication and can
therefore be considered to be a neat solution.

Remote Procedures. The name remote procedure may tempt us to consider
this feature as a suitable means to define interfaces to remote systems. In fact
a remote procedure can be exported and thus made public. But the semantic
model explains such a definition to be just a shortcut for an additional signal
exchange between importing and exporting agent which at each request is ready
to execute the procedure and to deliver the result [10].

A code generator could absolutely create an function for every exported dec-
laration, ignoring visibility rules and make it accessible from the outside. But still
the meaning of the parameter data types would be undefined, and in addition it
seems not to work the other way, accessing environment functionality.

The TAU tool seems to treat remote procedure like external procedures as
described above and encourages the user to use the code generation that way.

Transforming the System. This approach uses both signals to the environ-
ment and external procedures in order to gain a flexible mechanism for commu-
nication. An SDL specification which uses signals to the environment is rewritten
before the code generation. Thus the changes are completely hidden from the
designer. An additional process is introduced which becomes the new endpoint
of outgoing signals and the new source of signals from the environment. It uses
some external procedures as an API to access a communication protocol. It
depends on the implementation of the procedures which one that is.

Since the signature of the external procedures is always the same, these can be
implemented beforehand and are compiled into a dynamic library, one for each
communication protocol to support. One of these communication libraries can
be bound to the code generated for the specification. The resulting executable
will use the chosen technique for communication with the environment.

This choice can be done dynamically and also permits other implementations
of the API. Admittedly, this solution is also limited to a particular tool (Cin-
derella SDL), and does not allow different protocols to be used for one system
at a time.

4 A Runtime Library for Flexible Communication

In the final phase of system design it has to be decided how to distribute the
system components physically. To make automated code generation possible the
system can be decomposed into several correct SDL systems which communi-
cate with each other via the environment. For such open systems the runtime
library Selex, which is currently underlying the code generated by SITE, of-
fers a transmission technique. Differing from the tool APIgen [11], which deals
with similar problems using protocols as TCP for signal transport, Selex em-
ploys rather higher transmission mechanisms. That difference does not seem to
have conceptual reasons, but stems from the field of application. Actually only
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Fig. 2. Inter-system communication using Selex

two kinds of these higher level communication techniques have been tested: web
services and Corba [12]. A web service is defined using WSDL [13] and actual
messages transmitted as SOAP [14] (at least in the implementation used). Corba
services are described using IDL [15].

Selex is the latest innovation to SITE. It defines a general interface using
a standardized notation (depending on the communication technique desired)
which describes the format of signals and how to send them. Selex implements
that interface for the SDL system while the other side could be any peer using
that interface. Multiple communication partners require a mediator to distribute
the signals. Figure 2 gives a general idea of the signal flow when using Selex.

At the system boundary, SDL signals are mapped to the signal structures
use by the outside communication and vice versa. During the mapping the SDL
signal parameters, which are constrained to ASN.1 types, are encoded/decoded
using one of the ASN.1 encoding rule sets.

This is an extract from the description of the general communication in-
terface for systems. Variable data contains the parameters of SDL signals en-
coded by BER/PER [16, 17]. Every program which is able to call the operation
transfer signal can thus send a signal name to the generated SDL system
which implements the IDL interface CorbaSDLShellInterface.

struct CorbaSDLSignalStruct {
CorbaSDLSignalName name;
CorbaSDLSignalData data;

};
interface CorbaSDLShellInterface {
oneway void transfer_signal(in CorbaSDLSignalStruct signal);

}

A global variable decides about the encoding to use when exchanging signals
with the environment. Either BER or PER can be chosen at program start. When
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using BER the parameters are simply encoded and sent. The tag/length/value
encoding allows identification of the parameters even if some are left out. To find
out which parameters have been sent when using PER, a bit field is prepended
containing one bit for each parameter; if it is set the parameter is present.

There are some shortcomings in the Selex approach.

double encoding. Strictly, it should not be necessary to encode the signal
parameters since the communication techniques use their own encoding. So
the parameters are encoded twice. But otherwise the interface could not
be general and would depend on the actual signal definitions. In that case
somehow the two peers, the SDL system and its unknown partner, must have
exchanged their interface definitions. The SDL signal parameters then need
a mapping to the types of the interface description language (WSDL, IDL).

fixed encoding. A system can only use one of the encodings. In addition, the
chosen encoding of the enclosing signal is proprietary. To improve usability
implementing Z.104 seems to be a good choice.

single technique. Only one technique at a time can be used. It is not possible
to have the system exchange signals via two different gates bound to different
protocols. To enable such flexibility we come back to the need for a means
by which additional information on communication can be specified in SDL.

5 Requirements for Smooth Integration

When it comes to the implementation of an SDL system it becomes obvious that
additional information is needed to automate this final step of software develop-
ment. We have to specify how the different components comprising the system
are to be distributed onto physical nodes. These components require instructions
how to communicate with each other and with other peers outside the scope of
the specification. An open system without further need for distribution at least
has to be connected to its intended communication partners and as such only
is a special case of the scenario mentioned above. In general an SDL system is
missing information at least about:

– which parts of a system belong together and make up a functional compo-
nent,

– how to find the communication partners,
– which data description to use and which encoding. In fig. 3 some example

protocols and encodings are shown.

The latter two often are not distinguished from another in a protocol descrip-
tion and therefore are mentioned together. When employing Z.104 for a system
description ASN.1 could be specified to be used for the signal exchange along
with one of its available encodings.
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6 Conclusion

Code generators like SITE and APIgen try to connect some of the missing in-
formation to the system but succeed only partially. Is that just more evidence
that SDL is missing a vital power of expression? Should SDL be extended to
provide the description of implementation aspects to support code generation
and embedding? Possibly SDL should remain what is is – a language which is
describing behaviour on an abstract level by interacting state machines.

In this paper we reported our experiences in automated code generation de-
riving C++code from SDL-96 and ASN.1-88 specifications. The flexible approach
of the generator SITE bases the code on a runtime library, the communication
binding of which we showed to be more detailed. The conclusion is to confirm the
suspicion that it was not possible to host all information in an SDL specification
necessary for automated code generation. Recommendation Z.104 has pursued
the way introducing additional concepts concerning the encoding of signals. One
could be tempted to add in a similar approach other implementation details,
too. But after some reasoning that seems not to be the way to go for an abstract
description language. Rather, every language should be used for the purpose it
is suited best. Tools for code generation surely could manage to gather missing
information, but could do so in a more uniform way.
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Abstract. We present a tool that automatically checks the existence
of a bisimulation relation between an SDL specification and the corre-
sponding auto-generated C code. The tool has been used to verify part
of the C implementation of a WiFi Medium Access Controller (IEEE
802.11) that has been derived from its original SDL specification using
the Telelogic CAdvanced Code Generator.

1 Introduction

In embedded SW design, especially in the telecommunication field, the developer
usually starts with a functional model written in SDL [1, 2, 3] or in any other sim-
ilar high-level executable language. This model is extensively simulated, revised
and sometimes model checked [4] until it becomes the golden reference model.
In a second phase, this model is translated into an optimized implementation
model, usually written in C [3, 5]. The translation is usually automatic using
for instance compilers from SDL to C. Many companies still rely on manual
translation for efficiency reasons with respect to speed, power or other technical
issues.

Currently, the implementation model is simulated again and compared to the
reference model to look for discrepancies. Unfortunately, simulation requires a
great deal of time to set-up test benches. Additionally, simulation inputs are
necessarily redundant at times and incomplete at others especially when concur-
rency features of the system are at stake.

The inefficiencies of simulation can mean dramatically higher costs, longer
run times and persistent doubts [6]. As a direct consequence, verification be-
comes a very expensive process and is today swallowing up almost all resources
and manpower. Our goal is to have a more efficient validation procedure than
testing to assert the correctness of the implementation refinement. Moreover,
verifying a code generator formally is very expensive since all the proofs have to
be conducted all over again when the code generator changes whereas the vali-
dation we propose here occurs at each run of the compiler with a specific SDL
program at hand. We present a tool called SCEC (SDL C Equivalence Checker)
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that provides a fast and accurate validation of the C implementation derived
from SDL models. Currently our tool handles SDL-96 language constructs with
few exceptions and targets mainly the Telelogic CAdvanced Tau 3.5 code genera-
tor. We argue that our approach is not limited to this version of SDL and to this
particular tool, but can be applied to a broad class of asynchronous languages
and compilers targeting imperative languages.

2 Related Work

Originally applied to synchronous languages, the concept of translation valida-
tion was introduced by Pnueli, Siegel, and Strichman [7, 8]. Necula [9] generalizes
the work by applying it to the verification of optimizing compilers. In the field of
behavioral circuit description [10], C is verified against Verilog and uses Bounded
Model Checking to verify the consistency [11, 12] between the two descriptions.

In the SDL context, [13] proposes a method to check refinements between SDL
models by translating them into a process algebra formalism called CCS [14].
The main problem is that all the data part is abstracted away and the translation
leads to overly simplistic CCS models. Our approach is more general in the sense
that it addresses the implementation language and handles both the control
and data flows [15, 16]. Moreover, we propose a practical equivalence model for
asynchronous languages in general.

3 SCEC Tool

SCEC is a tool that has been developed in ANSI C (18 000 lines) together with
Flex and Bison generators to produce the scanners and the parsers for C and
SDL. A WxWidgets based graphical user interface has been developed in order
to browse the intermediate representation of the programs. Starting from the
syntax tree, SCEC can record all the transformations that are applied on the
trees up to the final normal form. This feature was valuable to debug the tool
itself.

4 Flow

SCEC (see fig. 1) generates the Abstract Syntax Tree for both SDL and C pro-
grams and performs standard semantic analysis. For the C part, AST comprises
data type definitions, global data declarations, and complete function bodies,
whereas for the SDL part, SCEC stores type definitions, signals and process
bodies. The ASTs are gradually transformed using rewrite rules. Some of them
are generic while others are specific to the CAdvanced code generator. At the end
of the rewrite process, we obtain on the one hand, a number of state transition
graphs representing the SDL processes and on the other hand, the corresponding
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C functions (that is yPADs) that implement them. All SCEC has to do, is to
compare the SDL processes and the yPADs pairwise.
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Fig. 3. Path matching

5 Process and yPAD Correspondence

A yPAD (see fig. 2) is a C function that defines all the transitions of the related
SDL process. The yPAD is called by the Telelogic CAdvanced scheduler that con-
trols the pseudo parallel execution of the communicating state machines. When
the head of the signal queue contains a signal instance that can be consumed
in the current state of the associated state machine, the scheduler fires the as-
sociated yPAD that will run one selected transition completely. The execution
control returns back to the scheduler after changing the state of the last fired
yPAD function.

6 Path Matching Concept

To grasp the concept of path matching, let us consider the two SDL processes
P and Q that are depicted in fig. 3. Starting from state A S0, P can either exe-
cute the path A1: state(A S0), input(A sig1(b)), guard(¬b), state(A S1) or the
path A2: state(A S0), input(A sig1(b)), guard(b), output(A sig2), state(A S2).
A path represents one transition from one state to its successor. We refer in the
following to a path with the term micro transition. Moreover, a group of micro
transitions under the same signal input are structured further to form a macro
transition. Now, P and Q are considered to be equivalent if the paths A1 and
A2 can be matched with the paths C1 and C2 respectively. Basically, if P and Q
have an identical internal state and they both consume the same signal instance,
then, at the end of the matching paths, they will have modified their internal
state in the same way and they will have output the same signal instances. In
our case, we need to compare an SDL process to a yPAD function, which is why
SCEC has to align the SDL and C internal representations by regenerating the
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original SDL process from the yPAD function. To cope with the combinatorial
explosion of paths, cut points are introduced at four levels (see fig. 4). These cut
points are used in our approach to establish a formal correspondence between
two descriptions.

Fig. 4. Modular verification using cut points

By restricting the type, abstraction level and number of cut points consid-
ered, we help the tool to establish the correspondence, since fewer pairs of cut
points have to be checked. On the other hand this implies less verifiable but
equivalent programs. However, no automatic tool can be expected to be able
to check all equivalent programs completely, since in general translation vali-
dation and software equivalence checking are undecidable problems. One of our
main contributions is to list those potential cut points that allow verification of
equivalence in practice.

7 Cut Points

We assume that the compiler or the developer respects some naming convention
that will allow SCEC to establish correspondence between cut points in order
to prove equivalence of the two descriptions. There are four levels of cut points:

1. process name versus yPAD function names.
2. state and connection names.
3. label names defining termination points of control edges.
4. Macro transition names.
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A macro transition starts with one of the following:

– an input signal.
– an enabling condition.
– a continuous signal.

A free action identified by the SDL keyword connection allows a split of the
graphical representation of an SDL process so that it can span over more than
one page. We use the label present in the in and out connectors as a cut point.
In addition, we exploit the fact that any control edge that the user defines when
drawing the SDL process will appear in the form of a join statement to a label
defining the termination point of that control edge. This means that all the loops
are cut allowing SCEC to reduce loop equivalence problems to path equivalence
problems.

8 Code Generator Assumptions

A yPAD does not contain enough information needed for SCEC to regenerate the
finite state machine. In fact, we still need to understand the interface between
the yPAD and the scheduler. The scheduler needs to store the execution context
information (an xPrsNode) and may shift some information that lies originally
in the SDL process definition, out of the yPAD in order to avoid firing idle
processes. Therefore, SCEC needs to analyze the xPrsNode structure as well.
The xPrsNode contains:

– A list of input signals denoted xInputSignals.
– A list of states occurring in the SDL process denoted xStateIdStruct.

Each xStateIdStruct element contains the following:

– A macro transition type table yStaH.
– A transition table called yStaI.
– A reference to enabling conditions denoted yEnab (optional).
– A reference to continuous signals denoted yCont (optional).

This concludes the list of information that has to be extracted by SCEC to
regenerate the original SDL process. In the next section we precisely define the
kind of equivalence we are referring to.

9 Equivalence Relation

We assume that both the SDL model and its C implementation can be compiled
into a normal form that we call a process network. Process networks can be
compared using an equivalence relation.

Proposition 1. Any process (i.e.; extended finite state machine) can be trans-
formed into a state transition graph such that each micro transition is repre-
sented by:
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– a sequence of terms built over the local data.
– a path predicate defining under which control condition that path is followed.

Proposition 2. Each micro transition in the state transition graph is closed
with either a nextstate statement or with a join statement referring to a connec-
tion name.

9.1 Equivalence Between Two State Transition Graphs

Definition 1. Let f and g two terms be in a micro transition (a path). We say
that f is equivalent to g written f ≡ g iff f is structurally identical to g.

Definition 2. Let ti and tj be two micro transitions. We say that ti is equivalent
to tj written ti ≈ tj iff:

– ti and tj contain equivalent sequence of terms.
– the guards in ti and tj are logically equivalent.
– the data and control dependencies between terms and guards are preserved.

Definition 3. Let Gsdl = 〈Ssdl, ssdl
0 ,−→〉 and Gc = 〈Sc, sc

0,−→〉 be two state
transition graphs.
Gc simulates Gsdl if it exists a binary relation ∼⊆ Ssdl × Sc such that:

– ∀ssdl ∈ Ssdl,∃sc ∈ Sc : ssdl ∼ sc

– ssdl ∼ sc ∧ ssdl −−→
tsdl

s′sdl ⇒ ∃s′c ∈ Sc : sc −→
tc

s′c ∧ s′sdl ∼ s′c ∧ tsdl ≈ tc

if Gsdl simulates Gc via ∼−1 then ∼ is a bisimulation.

Proposition 3. If two state transition graphs can be reduced to the same state
transition graph S3 then S1 bisimulates S2

In fact, each rewrite rule performed by SCEC is a reduction. Therefore, if after
composing a number of reductions on the C state transition graph and on the
SDL state transition graph we can reach the same transition graph then we can
conclude using proposition 2 that there is a bisimulation between the C and the
SDL.

9.2 Process Network Equivalence

Definition 4. A process network is a set of processes that communicate with
each other and with the environment asynchronously using signals and queues.

Assume we have two isomorphic process networks PNSDL and PNC such that
related components are equivalent in the sense of definition 3. If we compose
components of PNSDL and PNC with the same deterministic scheduler and
with the same environment then we can conclude that PNSDL and PNC are
also equivalent. We are definitely in the case of bottom up compositionality
principle of components-based design defined in [17].
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9.3 C to IR Translation

Translating SDL into the intermediate form was straightforward, since by con-
struction IR was built in such a way, that it subsumes a low level representation
of SDL models. For the C part it was less obvious. As a general principle, we have
chosen to unify concepts of both languages instead of reducing them to atomic
statements that would have made the correspondence almost infeasible [18].

         sig0 sig1 B0

B1

S0

’B0_code();’ ’B1_code();’

sig3

S1 S2 S3

S1

S2

sig2

Enabling  conditionSaved  signal Continuous  signalNormal  input

task a:=b;

a,b integer;

dcl

Fig. 5. SDL program fragment

In the following, we present some elements describing how the SDL process
represented in fig. 5 is regenerated from the components depicted in figs. 6 and 7.

– Local data retrieval: SCEC dereferences a pointer to an xPrsNode (see
fig. 6) passed as a parameter to the yPAD and then extracts the integer
fields a and b representing local data definitions.

– Transition number resolution: This is done by looking up the yStaI
tables to determine to which state and macro transition it corresponds. For
example, the transition number 4 (see fig. 6) occurs in the yStaI list that
belongs to the state S1. Moreover, the position of the transition number 4
in yStaI list corresponds to the position of sig2 in the xInputSignals list. At
last, to determine the macro transition type related to sig2, SCEC looks up
yStaH (see Table 1) at the position of sig2 in xInputSignals list and infers
that it is a normal signal input. The complete transition matrix of the process
depicted in fig. 5 is given in Table 2.

– Next state name regeneration The name corresponds to the element of
xStateIdStruct list that is indexed by the second parameter passed to the
SDL next state function. For instance, SDL next state(yVarP,1) corresponds
to nextstate(S1).
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Fig. 6. xPrsNode structure (see fig. 5)

xInputAction yEnab_S0 (signal_id,yVarP)

if (signal_id == sig3 )
{

if (yVarP−>B1)
  return 1;

return 2;
}

}

{

  return 2;

 

void yCont_S0(yVarP,*Addr)
{

{

    return;
}

*Addr=0;
return;

}

if (yVarP−>B0)

*Addr =  2  ;

B1_code();

B0_code();

/*Normal input*/
/*save the signal*/

/*save the signal*/

void yPAD (xPrsNode yVarP)
{

  ...

{
  ...

case 1 :

  ...
}

}

case 2:

case 3:

case 4:

SDL_next_state(yVarP,1);

SDL_next_state(yVarP,2);

SDL_next_state(yVarP,3);

  SDL_next_state(yVarP,2);

switch (yVarP−>TransitionNumber)

yVarP−>a=yVarP−>b;

Fig. 7. yPAD, yEnab and yCont correspondence

– Input reconstruction: Figure 8 illustrates how an SDL input statement
is translated to C. In fact, the scheduler passes to the yPAD a pointer to
the received signal (ySVarP) before firing the transition. This pointer is
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Table 1. yStaH interpretation

yStaH value Interpretation

0 unexpected signal
1 normal input
2 saved input
3 enabling condition

Table 2. Transition matrix

state event transition

S0 sig0 1
S0 B0 2
S0 sig3 3
S1 sig2 4

Fig. 8. SDL input statement translation

converted to the type of the signal corresponding to the selected transition.
Signal parameters are then stored to the local data of the SDL process.

– Output reconstruction The sending process allocates the necessary stor-
age to hold the signal instance at the receiver input queue using the get signal
function. The returned pointer yOutputSignal is used then to build the ac-
tual parameters of the signal from the local data fields (see fig. 9).

Fig. 9. SDL output statement translation

– Saved signal set reconstruction: Basically all the signals that have the
value 2 in the yStaH list are saved in the context state in which they appear.
For example, sig1 which is located at the second position in the xInputSignals
list is saved in state S0 (see fig. 6).
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– Enabling condition regeneration: By parsing the yEnab function refer-
enced in xPrsNode, SCEC extracts the guard associated to the signal. For
instance, sig3 is guarded by the expression B1 at state S0. When the guard
evaluates to false, the signal is saved.

– Continuous signal regeneration: The yCont function body referenced in
xPrsNode contains the boolean condition B0 and the transition number to
be fired in case the condition is fulfilled.

10 A Concrete Example

In the following subsections, we show how a concrete SDL example is translated
into C in order to figure out the kind of transformations that are applied by
SCEC to align the two internal representations.

10.1 SDL Transition Definition

The SDL process is represented in the yPAD function by a switch case statement
over the transition number. For instance, the state From LLC together with
the signal input MaUnitdata.request (lines 1 and 2) is mapped onto transition
number 1(line 102). The case statement is immediately followed by the process
local data update statements. In fact, all the parameters conveyed in the input
signal pointer are copied into the corresponding local data using the reference
yVarP that points to the xPrsNode structure (see fig. 8).

1 state From_LLC;

2 input MaUnitdata.request(sa, da, rt, LLCdata, cf, srv);

100 switch(yVarP->TransitionNumber)

101 {

102 case 1:

103 yAss_z0A_octetstring (&(yVarP->z0017_sa),

104 ((yPDef_z02_MaUnitdatarequest *)

105 ySVarP)->Param1,0);

106 yAss_z0A_octetstring (&(yVarP->z0018_da),

107 ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param2,0);

108 yVarP->z0016_rt = ((yPDef_z02_MaUnitdatarequest *)ySVarP)->Param3;

109 yAss_z0A_octetstring (&(yVarP->z0015_LLCdata),

110 ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param4,0);

111 yVarP->z0014_cf = ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param5;

112 yVarP->z001A_srv = ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param6;

10.2 SDL Conditional Assignment

A transition contains typically a sequence of actions to be performed when it
is fired. The transition presented in subsection 8.1 is followed by a conditional
SDL assignment (lines 3 to 9).
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3 task stat :=

4 if rt /= null_rt then

5 nonNullSourceRouting

6 else if (length(LLCdata) > sMsduMaxLng)

7 or (length(LLCdata) < 0) then

8 excessiveDataLength

9 else successful fi fi;

The CAdvanced code generator preserves the structure of the assignment
(lines 113 to 116) which allows SCEC to do a simple structural term comparison
instead of adding another factor in the number of paths to be matched. Note in
passing that the SDL synonyms resolution rewrite is necessary before unifying
the two assignment terms.

113 yVarP->z001B_stat = ((yVarP->z0016_rt) != (0) ? 5 :

114 (((((z0M1M_length (yVarP->z0015_LLCdata)) > (5678)))

115 ||

116 ((((z0M1M_length (yVarP->z0015_LLCdata))<(0)))))?4:0));

10.3 SDL Decision

The SDL decision (lines 10 to 29) comprises four micro transitions closed with
a join statement.

10 decision stat = successful;

11 (true) :

12 decision srv;

13 (strictlyOrdered) :

14 decision

15 import(dot11PowerManagementMode);

16 (sta_active) :

17 else :

18 task stat := unavailableServiceClass;

19 join grst29;

20 enddecision;

21 (reorderable) :

22 join grst28;

23 else :

24 task stat := unsupportedServiceClass;

25 join grst29;

26 enddecision;

27 (false) :

28 join grst29;

29 enddecision;

In the generated C code, the translation reflects the same branching structure
as in the SDL code and simply converts join statements into goto statements.
In a manual translation, we would more likely find a function call when the
label is referring to a free action or the introduction of an equivalent C iteration



SDL Versus C Equivalence Checking 335

statement in case of looping. In both cases, the cut points could still be derived
automatically.

117 if ((yVarP->z001B_stat) == (0))

118 {

119 yVarP->yDcn_z08_ServiceClass = yVarP->z001A_srv;

120 if ((yVarP->yDcn_z08_ServiceClass) == (1))

121 {

122 if (((*(z0O_PwrSave*)

123 xGetExportAddr(

124 &yReVR_z001H_dot11PowerManagementMode,

125 xSysD.SDL_NULL_Var, (int) 0,

126 VarP))) == (0))

127 {

128 }

129 else

130 {

131 yVarP->z001B_stat = 9;

132 goto L_grst29;

133 }

134 }

135 else if ((yVarP->yDcn_z08_ServiceClass) == (0))

136 goto L_grst28;

137 else

138 {

139 yVarP->z001B_stat = 8;

140 goto L_grst29;

141 }

142 }

143 else

144 goto L_grst29;

11 Path Matching

To establish the correspondence between SDL and C paths, SCEC needs to
match terms structurally. For example, the SDL terms defined between line 10
and 12 can be matched with their corresponding C terms defined between line 23
and 25. A path also contains guards representing the chosen alternatives when
conditional statements are met along the macro transition. To cope with guards
and auxiliary variables, SCEC relies on an external solver to verify that the
conjunction of guards on both sides are indeed equivalent.

1 SDL_path_ns_RXC_Idle(

2 guard(or(ftype(pdu)=reasoc_rsp,ftype(pdu)=asoc_rsp,

3 ftype(pdu)=reasoc_req,ftype(pdu)=asoc_req,

4 ftype(pdu)=disasoc,ftype(pdu)=null_frame)),

5 guard(or(sau=1,sau=2)),

6 guard(or(ftype(pdu)=reasoc_rsp,ftype(pdu)=asoc_rsp,
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7 ftype(pdu)=reasoc_req,ftype(pdu)=asoc_req,

8 ftype(pdu)=disasoc,ftype(pdu)=null_frame)),

9 guard(not(ftype(pdu)=null_frame)),

10 output(MmIndicate(pdu,endRx,strTs,0)),

11 label(grst50),

12 nextstate(RXC_Idle))

13 C_path_ns_RXC_Idle(

14 assign(z13_TypeSubtype,ftype(pdu)),

15 guard(or(or(or(or(or(z13_TypeSubtype=null_frame

16 ,z13_TypeSubtype=disasoc)

17 ,z13_TypeSubtype=asoc_req)

18 ,z13_TypeSubtype=reasoc_req)

19 ,z13_TypeSubtype=asoc_rsp)

20 ,z13_TypeSubtype=reasoc_rsp)),

21 guard(or(sau=1,sau=2)),

22 guard(not(ftype(pdu)=null_frame)),

23 output(MmIndicate(pdu,endRx,strTs,0)),

24 label(grst50),

25 nextstate(RXC_Idle))

12 Solver Invocation

The ICS [19] solver is particularly useful to cope with auxiliary variables added in the
generated C code (as in an SDL decision) and also to remove the redundant clauses
that are added by the path extractor algorithm. Basically, if ¬(Pathsdl ⇐⇒ PathC)
is unsatisfiable then Pathsdl ⇐⇒ PathC is valid. The following ICS code represents
an SCEC satisfiability query.

1 def z13_TypeSubtype := ftype(pdu).

2 prop c_path := [[[[[z13_TypeSubtype=null_frame

3 |z13_TypeSubtype=disasoc]

4 |[z13_TypeSubtype=asoc_req]]

5 |[z13_TypeSubtype=reasoc_req]]

6 |[z13_TypeSubtype=asoc_rsp]]

7 |[z13_TypeSubtype=reasoc_rsp]]

8 & ~[z13_TypeSubtype=null_frame]

9 & [sau=1 | sau=2].

10 prop sdl_path := [ftype(pdu)=reasoc_rsp|ftype(pdu)=asoc_rsp

11 |ftype(pdu)=reasoc_req |ftype(pdu)=asoc_req

12 |ftype(pdu)=disasoc|ftype(pdu)=null_frame]

13 &~[ftype(pdu)=null_frame]

14 & [sau=1 | sau=2]

15 & [ftype(pdu)=reasoc_rsp |ftype(pdu)=asoc_rsp

16 |ftype(pdu)=reasoc_req |ftype(pdu)=asoc_req

17 |ftype(pdu)=disasoc |ftype(pdu)=null_frame]

18 & ~[ftype(pdu)=null_frame].

19 prop path_eq:=[~c_path|sdl_path]&[~sdl_path|c_path].

20 sat ~path_eq.
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13 Results

The 802.11 MAC layer is IEEE standardized. The original SDL diagrams (4 000 lines)
came from the specification [20] and were automatically translated to C (17 000 lines)
using the CAdvanced 3.5 compiler. Using SCEC and ICS, the whole verification process
takes less than one minute on an Intel Centrino 1.5 GHz, since most of the verification
conditions turn out to be trivial after extracting the proper cut points. Figures 10 shows
statistics extracted from the intermediate representation. We can see clearly that the
number of micro transitions does not exceed one hundred paths for the biggest process
(TX coordination). This is due to the fact that free action cut points allowed factoring
out all the paths that precede the join statements and therefore reduce drastically
the number of paths to be matched. To check the soundness of SCEC, we injected
random defects into the correctly generated C code. Our tool found these inconsistency
instantly.
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14 Conclusion

We have described a practical method to check the equivalence between real world
SDL programs and their corresponding auto-generated C code. One key feature is
the full automation of the process. The SDL and C programs are translated into a
common intermediate representation for which we presented a bisimulation equivalence
argument. The translation into the intermediate form is done by applying specific
rewrite rules that capture the FSM encoding method and the optimizations done by
the compiler. Our method was successful in validating the translation of a commercial
compiler and should be certainly very useful for checking manually translated code.
Our plans for the future include the integration of the Telelogic CMicro compiler which
targets embedded applications and also to provide the user with a better diagnosis
capability for failed proof attempts.



338 M. Haroud and A. Biere

References

1. Olsen and Pedersen and Reed and smith: Systems Engineering Using SDL-92.
Elsevier Science 1994.

2. Juha Sipilä and Vesa Luukkala: An SDL Implementation Framework for Third
Generation Mobile Communications System. Nokia Research Center, Mobile Net-
works Laboratory 2001.

3. Hannikainen and Takko and Knuutila and Hamalainen and Sarrinene: SDL-to-C
Conversion for implementing Embedded Wireless LAN Protocols. IEEE Journal
2000.

4. N.Sidorova and M.Steffen: Verifying Large SDL Specifications Using Model Check-
ing. 10th International SDL-Forum 2001.
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Abstract. Telecommunication services are provided as the joint effort
of components, which collaborate in order to achieve the goal(s) of the
service. UML 2.0 collaborations can be used to model services. Further-
more, they allow services to be described modularly and incrementally,
since collaborations can be composed of subordinate collaborations. For
such an approach to work, it is necessary to capture the exact depen-
dencies between the subordinate collaborations. This paper presents the
results of an experiment on using Use Case Maps (UCMs) for describing
those dependencies, and for synthesizing the state-machine behaviour
of service components from the joint information provided by the UML
collaborations and the UCM diagrams.

1 Introduction

Telecommunication services are provided as the joint effort of active objects,
which collaborate in order to achieve a goal for their environment. Initiatives may
originate from any side, be simultaneous and possibly conflicting. This is what
makes tele-services interesting, but at the same time particularly challenging to
design.

Traditional service engineering approaches have been object-oriented. They
have focused on modeling the total behaviour of objects, normally in terms
of state-machines. The disadvantage of focusing on the complete behaviour of
objects is that we only get a partial view of the services we want to design,
which makes it difficult to understand and analyze them. Since telecommunica-
tion services are the result of collaborations among objects pursuing a goal, a
collaboration-oriented approach to service engineering seems more suitable [1, 2].
A collaboration view helps to see the service as a whole, to define what roles are
played by which objects, and to express what service goal combinations must be
met for the successful provision of the service.

UML 2.0 collaborations [3, 4] are intended to describe partial functionalities
involving interactions among participating roles played by objects. Therefore,
they fit well with our understanding of service. An interesting characteristic of
UML collaborations is that they can be bound to a specific context, becoming
collaboration uses, which in turn can be used in the definition of larger collabo-
rations. This feature enables a compositional and incremental design of services,

A. Prinz, R. Reed, and J. Reed (Eds.): SDL 2005, LNCS 3530, pp. 339–359, 2005.
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which is desirable, but which will only succeed if the dependencies between the
collaborations that are composed are explicitly captured [5].

This paper presents our approach to incremental service modeling using
UML 2.0 collaborations and motivates the need for explicitly expressing col-
laboration dependencies in this approach (see section 2). It continues with the
results of an experiment on using Use Case Maps (UCMs) [6, 7] for describing
such dependencies (see section 3) and synthesizing the state-machine behaviour
of service components from the joint information provided by the UML collab-
orations and the UCM diagrams (see section 4). The paper finishes with a com-
parison between our synthesis approach and other existing work (see section 5),
and with a summary of the presented work (see section 6).

2 Goal-Oriented Service Collaborations

In our service engineering approach we model services by means of UML 2.0
collaborations. They describe a structure of roles that collaborate to collectively
accomplish some task, that is – to achieve some goal. The collaboration roles
specify the properties that object instances must have in order to participate
in the collaboration. The UML standard allows the association of behaviour
with collaborations in several forms, such as sequence diagrams involving the
collaborating roles, or as state-machines for the roles. Since our approach is
collaboration-oriented, we prefer to describe the behaviour of collaborations as
sequence diagrams that show the interactions between roles, rather than using
state-machines for the roles.

Figure 1 shows a UML collaboration diagram describing a UserLogon ser-
vice. From the diagram we can see that there are five roles involved in the
collaboration (represented by boxes). We can also see the relationships that are
needed between these roles to achieve the goal of the collaboration. For exam-
ple, Terminal is associated with TerminalClientSession, which in turn is a
part of TerminalAgent and it is associated with UserTerminalSession. The
diagram also shows one interesting aspect of UML collaborations: they can con-
tain other sub-collaborations in their definition, expressed as collaboration uses.
When this happens, the roles of the collaboration uses are bound to the roles
of the container collaboration (for example rr1 ’s requested role is bound to
TerminalAgent). Collaboration uses enable a modular design with small collab-
orations as units of reuse. Modularity is a well-proven approach to break down
the complexity of systems; here we use it to structure services. It also promotes
separation of concerns and reuse. These aspects are reflected in the UserLogon
collaboration, which contains four sub-collaborations, namely rr1, rr2, lo and ua.
The two first, rr1and rr2, are instances of a RoleRequest collaboration, while
lo and ua are instances of a Logon and a UserAuthenticate collaboration, re-
spectively. We can see that the RoleRequest collaboration has been reused.
We also appreciate how separation of concerns has been achieved by separately
defining the interactions between Terminal and TerminalClientSession, and
between TerminalClientSession and UserTerminalSession. Indeed, although
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logon and authentication protocols are related, they are not exactly the same.
For example, it may be perfectly possible for two different logon protocols to
make use of the same authentication protocol.

Terminal

Terminal
Agent

Terminal
ClientSession

UserAgent

UserTerminal
Session

 

rr1:Role
Request

requestor

requested  

invoked            

rr2:Role
Request

requestor invoked         

requested

 

ua:User
Authenticate

 

lo:Logon

         loTerm loAgent uaAgentuaTerm

UserLogOn

s_goal.loggedOn =
loTerm.s_goal:loggedOn

 
loAgent.s_goal:loggedOn

s_goal.userLoggedOn =
rr1.s_goal:playing
 rr2.s_goal:playing

     ua.s_goal:authenticated
    lo.s_goal:loggedOn

Collaboration

Collaboration 
Use

Collaboration Use
role

Collaboration
role

Fig. 1. UML 2.0 Collaboration for UserLogon Service

We have just seen the benefits of defining collaborations in terms of other
smaller collaborations. However, when looking at fig. 1 we can guess how
UserLogon works, but we do not exactly know how it does it. Even if we know
how each of the four small sub-collaborations works in isolation, we do not know
how they work together. Does rr1 happen before lo or afterwards? Does lo fin-
ish before ua starts or do they overlap? Can lo succeed with independence of
what happens to ua or does it depend on its result? These are questions that we
have to answer if we really aim at composing collaborations, and we can do it
by explicitly describing the dependencies between collaborations, that is, their
inter-relationships.

Sanders [8] has proposed associating goals with services considered as col-
laborations as a means to express liveness properties. Event goals (e goals) are
desired events, while state goals (s goals) are properties of collaboration global
states that we wish to reach and entail combinations of role goals. Sanders found
that service goals may also be used to express the dependencies that exist be-
tween collaborations. These goals become then synchronization points between
collaborations. For example, we may say that when rr1 ’s goal is achieved, lo is
enabled, that is, it can happen. Following this approach the problem of show-
ing the dependencies between collaborations turns into the problem of show-
ing the dependencies between their goals, but we still miss a good solution to
show such dependencies. Sanders, for example, defined the goal of UserLogon
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(s goal:userLoggedOn) as a logical AND-operation over the goals of its subor-
dinate collaborations, as depicted in fig. 1. However, while such an expression
reveals that UserLogon only succeeds if all its subordinate collaborations also
succeed, it still does not tell us the order in which the collaboration goals are
achieved. To overcome that limitation Sanders also experimented with several
UML concepts to describe goal dependencies, such as activity diagrams and in-
teraction overview diagrams. These diagrams are good at expressing sequential
and parallel relationships, but they do not meet all our needs, since they fail to
express finer relationships between intermediate goals, as those existing when
two collaborations overlap. For example, in UML activity diagrams activities
can be nested, so if we represent collaborations as activities, it would be possible
to show (to some extent) that, for example, lo only succeeds if ua also succeeds,
by nesting ua inside lo. However it does not seem possible to show, for example,
that a collaboration starts, after certain time enables a second collaboration,
and from then on both run in parallel (see fig. 3c).

Since UML diagrams do not meet all our needs, we have analysed Use Case
Maps to see if they offer better support for expressing goal dependencies, since
they are well known for their ability to explicitly capture inter-scenario relation-
ships. The result has been promising, since we have been able to successfully
describe several types of dependencies. Moreover, we have experimented with
the synthesis of state-machines for collaboration roles using the UCM informa-
tion to guide the process, and the results are again promising. We take a closer
look at these two aspects in the next sections.

3 UCMs for Describing the Goal-Based Progress of
Collaborations and Their Inter-relationships

Use Case Maps (UCMs) [6, 7] are a scenario-based graphical notation used to
describe causal relationships between responsibilities (tasks, actions, etc), which
may be bound to abstract components. Basically, UCMs order responsibilities
along a path and link causes (preconditions or triggering events) to effects (post-
conditions). With UCMs several scenarios can be easily integrated in a single
diagram. This is quite useful for showing interactions between the scenarios and
understanding their combined behaviour.

In section 2 we argued that the dependencies between collaborations can be
expressed in terms of their goals. That is, by relating the event and state goals of
different collaborations we can effectively capture their inter-relationships. Our
aim is to use UCMs to:

1. describe the goal-based progress of each collaboration (i.e. the causal rela-
tionships between its event and state goals) in isolation;

2. integrate the individual UCMs into more elaborated diagrams that show the
dependencies between the individual collaborations.

An example is given in fig. 2, where separated UCMs for the RoleRequest,
UserAuthenticate and Logon collaborations are shown in the upper box, and



State-Machine Behaviour from UML Collaborations and Use Case Maps 343

rr.start rr.s_goal:playing

rr.fail

(a) UCM for RoleRequest and Plug-in for rr1 and 
rr2 stubs

(b) UCM for UserAuthenticate and Plug-in for 
ua stub

ua.start

ua.fail
ua.s_goal:

userAuthenticated

lo.start lo.s_goal: loggedOn
lo.e_goal:

logonRequested

lo.fail

(c) UCM for Logon

(d) UCM for UserLogon

IN1 IN1
OUT1OUT1

OUT2

UserLogon.fail

OUT2

loCCrr1
UserLogon.start

UserLogon.s_goal:
userLoggedOn

(e) Plug-in for loCC stub

lo.start

lo.s_goal:
loggedOn

IN1

lo.e_goal:
logonRequested

OUT1 IN1

OUT2 OUT2

OUT1

[ua.s_goal:
userAuthenticated]

[rr2.fail OR ua.fail]
lo.fail

rr2 ua

rr1's binding:

{(IN1,rr1.start),
(OUT1,rr1.s_goal:playing),
(OUT2,rr1.fail)}

rr2's binding:

{(IN1,rr2.start),
(OUT1,rr2.s_goal:playing),
(OUT2,rr2.fail)}

ua's binding:

{(IN1,ua.start),
(OUT1,ua.s_goal:userAuthenticated),
(OUT2,ua.fail)}

loCC's binding:

{(IN1,lo.start),
(OUT1,lo.s_goal:loggedOn),
(OUT2,lo.fail)}

rr2_ua_WP

Start-point

Waiting-places

Responsibility

Stub

End-point

Condition

Fig. 2. UCMs for the UserLogon Service

their integration into more complex UCMs for the UserLogon collaboration is
shown in lower box. We will explain the dependencies expressed by these UCMs
in section 3.2, but before that we will briefly explain the basic UCM elements
and how we use them.
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3.1 Basic UCM Notation

It is not the scope of this paper to explain how UCMs work, so we will just
briefly explain the UCM notational elements needed to understand the figures
and concepts presented here. Those notational elements are highlighted in fig. 2.
For a more detailed explanation of them, and of UCMS in general, please refer
to [6, 7].

In the UCM notation paths (depicted as lines) represent scenario flows, so we
have used them to represent the lifeline of collaborations. They connect start-
points with responsibilities and end-points. A start-point (labeled with ‘collab-
oration name.start’) is a pre-condition or triggering cause that symbolizes the
beginning of a collaboration, while an end-point is a post-condition represent-
ing one of its possible outcomes in terms of achievement (or not) of its goal(s).
End-points representing achievement of state goals are labeled with ‘collabora-
tion name.s goal:goal name’, while those representing failure are labeled with
‘collaboration name.fail’. fig. 2a exemplifies the use of these notational elements.
The figure shows a simple collaboration that, after starting, it can reach any of
two final states:

one representing the achievement of its goal (labeled rr.s goal:playing);
the other representing failure on achieving its goal (labeled rr.fail).
Responsibilities are intended to represent generic tasks or actions. We use

them, however, to represent event goals, that is, to show that collaboration
achieves some progress (see fig. 2c). Therefore, we interpret responsibilities as
“tasks to achieve some progress”. We understand that this use of responsibilities
is not completely rigorous, but we think it is acceptable1.

Static stubs can be used to better structure a large diagram. They are contain-
ers for sub-maps (called plug-ins) and, in our approach, represent collaboration
uses. This is an elegant way of representing the composition of a collaboration
from other subordinate collaborations. An example of the use of stubs can be
seen in fig. 2d, where the UserLogon collaboration is composed of two other
collaborations, namely rr1 and loCC. The plug-ins for these collaborations are
shown in figs. 2a and 2e respectively. fig. 2d (at the sides) also shows how the
bindings between the inputs and outputs of a stub and the start- and end-points
of its plug-in are defined.

Waiting places are points where the path waits for an event to happen (such
as an arrival along a tangentially connected path or a connected end-point).
They constitute points where interactions with the environment or other paths
can happen, so they can be used to couple collaborations and so express causal
dependencies between them. As guard conditions for waiting places, we use log-
ical expressions in terms of event and/or state goals of the triggering collabora-
tion. The use of waiting places is illustrated in fig. 2e, where two waiting places
are shown. The first one (to the left) is activated when there is an arrival on the
lo’s path, that is, after lo achieves logonRequested progress. When this happens,

1 If this interpretation is not acceptable we may use open waiting places (see [6])
instead of responsibilities.
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the collaboration represented by the rr2 stub is enabled. The second waiting
place (to the right) is used to make the lo collaboration wait for the outcome of
ua and/or rr2.

AND-/OR- forks and joins can be used to, respectively, split and merge
paths.

3.2 Dependency Patterns

A side-effect of decomposing the interactions between components into small
collaborations is (as we have already pointed out) that the dependencies be-
tween the resulting collaborations must be explicitly captured. The majority of
these dependencies can be classified as: sequential dependencies, if they impose
a temporal ordering between collaborations; or as goal dependencies, if the goal
of a collaboration depends on the goal(s) of other collaboration(s).

We can express collaboration dependencies using UCMs. To do it, we have
to couple the UCMs that represent each individual collaboration according to
the patterns that we present below.

Sequential Dependencies. Sequential dependencies impose a temporal order-
ing between collaborations. If a collaboration c2 depends sequentially on another
collaboration c1, we say that c1 enables c2. Two UCM patterns can be used to
express sequential dependencies between collaborations. The selection of the ap-
propriate pattern is made according to the nature of the condition that enables
the dependent collaboration.

If the collaboration c2 is enabled when c1 achieves (or not) its goal, the
appropriate end-point of c1 is connected with the start-point of c2 (see fig. 3a).
In situations where stubs are used to represent collaborations, the appropriate
output of the “enabling” stub is interconnected with the input of the “enabled”
stub (see figs. 3b and 2d).
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c1 c2
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c2

c1.e_goal:
e2
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g1

c2.fail2c2.fail1enabling_point

IN1 OUT1

OUT2
OUT3

Fig. 3. Sequential Dependencies

If the collaboration c2 is enabled when c1 achieves some progress (reaches
an event goal), the start-point of c2 is tangentially connected to the path of c1,
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just after the responsibility representing the event goal that enables c2. Note
that if a stub is used to represent c2, its start-point is not directly connected to
the path of c1. However, this connection happens indirectly through an auxiliary
path with its start-point connected tangentially to c1 ’s path, and its end-point
merged with the input of the stub. This is shown in fig. 3c, where c2, represented
by a stub, is enabled when c1 achieves event goal e1 (setting its value to true).
Note also that in order for the interconnection to be effective, the enabling point
waiting place2 must have its guard condition set to c1.e goal:e1 == true. After
c2 is enabled, both collaborations, c1 and c2, run concurrently.

Goal Dependencies. A goal dependency exists when a collaboration depends
on the success of other collaboration(s) in order to achieve its own goal(s). This
dependency can be either total or partial. When a collaboration C has no own
behaviour, but its behaviour has been completely specified by reusing other col-
laborations, we talk about total goal dependency. In this case, C ’s goal is com-
pletely specified in terms of the other collaborations’ goals (for example C.goal =
c1.goal ∧ c2.goal). However, if the achievement of C ’s goal not only depends on
the achievement of other collaborations’ goals, but also on the progress achieved
by C itself, we talk about partial goal dependency.

We can show a total goal dependency using a UCM for the main collaboration
that does not include any responsibility, and in which the subordinate collabora-
tions are stubs. This is illustrated in fig. 2d, where the UserLogon collaboration
is composed of two other collaborations, namely rr1 (see fig. 2a) and loCC (see
fig. 2e). The interpretation of UserLogon’s UCM is as follows. When UserLogon
starts, rr1 is automatically enabled and runs to completion. If it fails to achieve
its goal, so does UserLogon. But if rr1 succeeds, loCC is enabled, which also
runs to completion. In the same way as before, if loCC fails, so does UserLogon,
but if it succeeds, UserLogon achieves its goal. Therefore, this UCM tells us
both the execution order of the collaborations and the goal dependency that
UserLogon maintains with rr1 and loCC.

According to fig. 2d, UserLogon.fail = rr1.fail ∨ lo.fail . We could have given
a different meaning to UserLogon.fail (or even have defined several types of
failure) just by connecting the outputs of the stubs in a different manner, with
help of OR-joins and AND-joins.

Note also that UserLogon is a composition of rr1 and loCC, where loCC is in
turn a composition of rr2 and ua. This shows how collaborations can be nested
in several levels.

A partial goal dependency can be illustrated applying the patterns depicted
in fig. 4 or fig. 5. The key aspect behind both patterns is the interconnection of
the collaboration UCMs by means of waiting places.

Figure 4 shows a case in which a subordinate collaboration c2 is enabled
when the main collaboration c1 achieves certain progress. Then c1 waits for c2
to run to completion and, depending on c2 ’s goal outcome, c1 either succeeds

2 enabling point is actually a start-point, but start-points are special waiting places
for a stimulus to start a path.
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itself or not. This is the same type of dependency expressed in fig. 2e, where the
lo collaboration is partially goal dependent on rr2 and ua collaborations.

There are four aspects that deserve explanation in this pattern:

1. There is no interaction between c1 and c2 other than the one at the be-
ginning and at the end of c2. That is, the subordinate collaboration, once
enabled, runs without interruption. Therefore we use a stub to represent it.

2. The subordinate collaboration is actually sequentially dependent on the main
collaboration. To express that its start-point is tangentially connected to the
path of the main collaboration, just after the responsibility that represents
the enabling event goal.

3. A waiting place is added to the main collaboration’s path at the point where
the end-point of the subordinate collaboration must be connected. The main
collaboration waits there for the subordinate one to finish.

4. Conditions expressed in terms of the subordinate collaboration success or
failure are added to the OR-joins of the main collaboration. By doing this
we join pre-conditions (related to the subordinate collaboration) with post-
conditions (related to the main collaboration).

The collaboration composition presented in fig. 5 is slightly more complicated.
Here the collaborations do not only interact at the beginning and at the end
of the subordinate collaboration, but also at intermediate points of the latter
collaboration’s lifetime. The only difference compared with the previous case is
that we have to interconnect the two collaborations at those intermediate points.
This is done by using the connectors illustrated in fig. 5. They are paths with
one or more start-points, one end-point, and one waiting place connected to the
end-point. The start-points are connected to the enabling collaboration and the
waiting-place is inserted into the path of the enabled collaboration. Note that
both the main and the subordinate collaborations can adopt, at different times,
the roles of enabling and enabled collaborations, depending on the concrete
interactions that take place between them.

4 Towards Automatic Synthesis of State-Machines

The proposed service engineering process ends up with the translation from the
collaboration-oriented view (where a service is described as a collaboration) into
the object-oriented view (where the total behaviour of the service objects partic-
ipating in the service provision is described as state-machines). This translation
process basically consists of building the state-machines of the collaboration roles
and binding them to instances of objects. This could be a trivial step if a col-
laboration was not decomposed into smaller sub-collaborations. However, when
decomposition is used, as it is the case for the UserLogon collaboration presented
in fig. 1, the process is not so trivial. In the figure we see that an object playing
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the TerminalClientSession role will indeed play four sub-roles3: rr1, lo, rr2
and ua; each one in a different sub-collaboration. Therefore, we have to compose
the state-machines of those four sub-roles in order to synthesize the behaviour of
TerminalClientSession. We need to know then the order in which the roles are
played, and if their executions overlap or not. This information can be extracted
from the UCM describing the UserLogon collaboration (see fig. 2d).

The synthesis process we present here allows mechanical generation of the
aforementioned state-machines. In section 2 we mentioned that, in our approach,

3 The UML standard does not use the word sub-role when talking about collaboration
use roles that are bound to collaboration roles. However the informal interpretation
is that of roles of a role, or just sub-roles as we like to call them.
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Fig. 5. Partial Goal Dependency (II)

the behaviour of each collaboration is described with sequence diagrams. These
diagrams are taken as input for the synthesis process, as well as the UCM rep-
resenting the service collaboration, which shows the dependencies between its
sub-collaborations. In the following we will refer to this UCM as “the composite
UCM”.

For each collaboration role, the process for synthesizing the state-machine
of an object playing that role consists of four steps. These are explained below,
and illustrated by the synthesis of a fraction of the state-machine of an object
playing the TerminalClientSession role:
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1. Determine the sub-collaborations4 the object participates in. This is nec-
essary because the composite UCM may contain information about other
collaborations not relevant for this object, which should be ignored.
Store the collaboration names, together with the name of the role the object
plays in each collaboration, in a table, which we will refer to as the Role
Table. Table 1 is the Role Table for TerminalClientSession.

Table 1. Role Table for the TerminalClientSession

Collaboration Collaboration Role

rr1 invoked

lo loAgent

rr2 requestor

ua uaTerm

2. For each collaboration and role in Table 1, project its associated sequence
diagram into the lifeline of the role. This is done to obtain, for each role,
an automaton (still with goal information) describing its behaviour in the
collaboration. Note that this automaton may be stored in the collaboration,
to be reused in the future. This process is shown in fig. 6 for some of the
sub-roles of TerminalClientSession.

3. Use the composite UCM (see fig. 2) to guide the composition of the au-
tomata generated in step 3 into a state-machine. The UCM is traversed and
the automata (as a whole or in parts) are added to the final state-machine
attending to the events we find in the UCM’s paths. This is done according
to the algorithm described in the Appendix.

4. As a final step, suppress any state existing between consecutive input and
output transitions.

It should be noted that the synthesized state-machine is not complete, because
it does not include internal actions, which have to be added at a later stage by
the designer. We plan to look at how this can be done in future work.

4.1 An Example

In this section we illustrate how the state-machine of an object playing the
TerminalClientSession role can be intuitively synthesized from the joint in-
formation provided by the composite UCM for UserLogon and the automata for
the invoked, requestor, uaTerm and loAgent roles.

4 For the sake of simplicity, the prefix sub will be omitted in the following, but the
reader should be aware that when we say “collaboration” we really mean “sub-
collaboration”.
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Fig. 6. Projection of Interactions into Collaboration Roles

Looking at fig. 2d, we see that just after UserLogon starts, the rr1 stub is
found. Its plug-in (see fig. 2a) indicates that the rr1 collaboration starts. Since
TCS participates in rr1, playing the invoked role, we study the details of the plug-
in. It indicates that rr1 starts and runs to completion without interruptions, so
we add the whole automaton for the invoked role to the TCS state-machine (see
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fig. 7, step 1). After the rr1 stub, we find the loCC stub. When we look at
its plug-in (see fig. 2e) we see that lo starts. TCS also participates in this col-
laboration, where it plays the loAgent role. We therefore look at the details of
the plug-in and see that a responsibility corresponding to logonRequested event
goal is reached. As a result, we take, from the loAgent automaton, the tran-
sitions and states placed between the start symbol and the transition marked
with e goal:logonRequested (inclusive) and add them to the TCS state-machine
(see fig. 7, step 2). Following the UCM we see that a new path containing two
stubs, namely rr2 and ua, is triggered, while lo waits at the rr2 uaWP waiting
place. These two stubs represent two collaborations which TCS participates in,
playing the requestor and uaTerm roles in them, respectively. Therefore, we add
the whole automaton for both the requestor and the uaTerm roles to the TCS
state-machine. Note, that the requestor ’s automaton is added after the tran-
sition marked with e goal:logonRequested (see fig. 7, step 3), since the UCM’s
interpretation is that e goal:logonRequested enables rr2 and thus the requestor
role. The uaTerm’s automaton is added, in turn, after the state marked with
s goal:playing (see fig. 7, step 4), since the UCM tells us that rr2.s goal:playing
enables ua. Following the UCM we arrive at the rr2 uaWP waiting place where
lo was waiting. That means that lo is enabled again. The UCM indicates that
if ua.s goal:userAuthenticated was achieved, lo achieves its own goal. Thus we
take, from the loAgent automaton, the transitions and states placed between
the transition marked with e goal:logonRequested (the point where we stopped
last time) and the state marked with s goal:loggedOn (inclusive) and add them
to the TCS state-machine. The addition is performed at the state marked with
ua.s goal:userAuthenticated in the TCS state-machine (see fig. 7, step 5). In
much the same way, we take, from the loAgent automaton, the transitions and
states placed between the transition marked with e goal:logonRequested and the
state marked with fail (inclusive) and add them to the TCS state-machine, at
the states marked with rr2.fail or ua.fail (see fig. 7, step 6).

The synthesis of the state-machine for TCS is now finished. However, the
resulting state-machine is not totally correct. As a final step we need to suppress
any state existing between consecutive input and output transitions. This is also
shown in fig. 7.

5 Related Work and Discussion

The idea of synthesizing state-machines/state-charts from scenario models is not
new, as demonstrated by the number of existing publications in this area. Quite a
few papers have been published proposing automatic synthesis approaches that
make use of extra information to guide the synthesis process, for example [9,
10, 11, 12, 13]. Our approach is however not currently automated, but there is
nothing that prevents its automation.

Leue et al. [9] use HMSCs to explicitly compose a set of MSCs from which
ROOM statecharts are synthesized. Mansurov and Zhukov[10] also use HMSCs in
their synthesis of SDL state-machines. HMSCs abstract away the details of MSCs
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Fig. 7. Synthesized State-machine for TerminalClientSession

and give a high-level view of the relation between scenarios. The disadvantage,
however, of using HMSCs (and their UML counterparts Interaction Overview
Diagrams) is their lack of support for describing composition of overlapping
scenarios, such as those described by the Logon (lo) and UserAuthenticate
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(ua) collaborations (see figs. 1 and 6). To express the composition of these two
collaborations with an HMSC we should split the sequence diagram associated
with the Logon collaboration in two diagrams. By using UCMs to describe the
goal-oriented progress of collaborations we also abstract away the details of se-
quence diagrams, while we are able to describe the composition of overlapping
collaborations.

Krüger et al. [12] adopt a different approach for the synthesis of statecharts
from a set of MSCs. Instead of explicitly describing the composition of MSCs,
state information is included in them, so different MSCs are related on the basis
of similar states. This can be compared to our use of state and event goals,
which we include in the sequence diagrams associated with the collaborations
(see fig. 6) to help during the synthesis process. However, in our approach, the
state and event goals are not shared between sequence diagrams belonging to
different collaborations, as would be required in order to apply the Krüger et al.’s
approach. In contrast, we relate the goals of different collaborations by means of
UCMs. Our approach promotes, thus, reuse and separation of concerns between
scenarios, at the time that makes explicit their inter-relationships.

The approach by Whittle and Schumann [11] also advocates including extra
information in the scenarios in order to relate them. Pre- and post-conditions,
expressed in OCL, are used to give semantics to the messages of UML sequence
diagrams, from which UML state-charts are generated. The proposed synthesis
algorithm does not, however, support overlapping scenarios. This is the main
drawback of this approach. Another disadvantage is its low-level of abstraction,
since constraints are specified on a per-message basis. Its scalability could also
be questioned, since its application to large systems with many scenarios and
interactions will probably be a tedious task. On the contrary, with UCMs it is
easier to inter-relate the scenarios (that is the collaborations) of large systems
in a structured way.

Uchitel et al. [13] present an MSC language with semantics based on scenario
composition, state identification and label transition systems (LTS). They fur-
ther present an approach for synthesizing label transition systems (LTS) from
a set of scenarios described in their MSC language. This approach, as ours,
tries to combine the benefits of approaches using scenario composition, such
as [9] and [10], with the benefits of approaches using state identification, such
as [12, 11]. Moreover, the authors show how their approach can be used to sup-
port other synthesis approaches and make their assumptions explicit. The draw-
back of Whittle and Schumann’s approach is, however, its lack of support for
overlapping scenarios.

A semi-automatic approach for the synthesis of UML state-charts from a
set of UML sequence diagrams is given by Mäkinen and Systä in [14]. In their
approach no extra information is used to guide the synthesis process. UML
sequence diagrams are considered to represent example cases that can be treated
in any order. If an ambiguity is found during the synthesis, the user is consulted.
This approach recognizes the difficulty of precisely defining the dependencies
between scenarios, which by nature are incomplete and many times overlapping.
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Specially interesting in this approach is the ability to discover ambiguities in a
set of scenarios. Its drawback, however, is the total absence of extra information
to guide the synthesis process, which makes it too dependent on the user. It
would be interesting to study how the approach we present here may benefit
from the ambiguity discovery ability of Mäkinen and Systä’s approach.

The work presented here is not the first one that uses UCMs for the synthesis
of state-machines from scenarios. In [15, 16, 17] UCMs are also used for that
purpose. The differences with our approach lies, however, on the concrete use
of UCMs that is done. We use UCMs to describe the dependencies between
collaborations at a high level of abstraction. In contrast, Sales [16] uses UCMs
to describe SDL state-machines, while both Bordeleau [15] and He et al. [17]
use UCMS, at an initial stage, to capture the requirements of services. Then
UCMs are translated into MSCs, which are finally used to synthesize SDL state-
machines. The approach by He et al. [17] is fully automated, thanks partially
to the use of the UCMNav tool [18, 19], which permits graphical construction
of UCMs and translation into MSCs, as well as export the UCMs as XML files.
These files could be used in the automation of our approach.

6 Conclusions

We have presented a service modeling approach that uses UML 2.0 collabo-
rations, sequence diagrams and UCMs in a complementary way. UML collab-
orations are used to describe services as a structure of roles collaborating to
perform a task or achieve a goal. They help to get a high-level view of services.
The low-level details of the collaborations are then given in the form of asso-
ciated sequence diagrams annotated with goal information. A strong feature of
UML collaborations is the possibility to compose them from other smaller sub-
collaborations (by using collaboration uses). This allows for a modular approach
that promotes reuse and separation of concerns. However, we argue that for such
an approach to work, collaboration dependencies must explicitly be described.
We use UCMs for this purpose. They are used to describe causal relationships
between the event and state goals of isolated collaborations and to effectively
relate goals of different collaborations.

Several patterns for the illustration of goal and sequential dependencies be-
tween collaborations using UCMs have been proposed. They are not intended to
cover all possible cases of dependencies, but just as a starting point in this way.

An experiment has been performed to synthesize the state-machine of a col-
laboration role from other smaller roles. As input for this process we have used
the information provided by the UML collaborations, in the form of sequence
diagrams, and the dependency information provided by a UCM. The results
have been satisfactory for small services, as the one presented here. However, we
need to experiment with other more complex services to really understand the
potential of our synthesis approach.
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The work presented here is, however, at an early stage of maturity. Further
research has to be done in several directions. We are currently working with the
improvement and implementation of the synthesis algorithm. We are also inves-
tigating rules for choosing appropriate event and state goals, as well as studying
the formalization of goals expressions in terms of temporal logic. We would like
to study further the classification of dependencies and their illustration with
UCMs, so as to make their scope larger. Finally, we would like to extend our
approach to the generation of Hierarchical State Machines, as we believe they
provide better support for evolving systems.
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1. Rößler, F., Geppert, B., Gotzhein, R.: Collaboration-based design of SDL systems.
In Reed, R., Reed, J., eds.: SDL ’01: Proceedings of the 10th International SDL
Forum Copenhagen on Meeting UML. Volume 2078 of Lecture Notes in Computer
Science., Springer-Verlag (2001) 72–89

2. Fisler, K., Krishnamurthi, S.: Modular verification of collaboration-based software
designs. In: ESEC/FSE-9: Proceedings of the 8th European software engineer-
ing conference held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, ACM Press (2001) 152–163

3. Object Management Group: UML 2.0 Superstructure Specification. (2004)
4. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference

Manual. 2nd edn. Addison-Wesley (2004)
5. Bordeleau, F., Corriveau, J.P.: On the importance of inter-scenario relationships

in hierarchical state machine design. In Hußmann, H., ed.: FASE ’01: Proceed-
ings of the 4th International Conference on Fundamental Approaches to Software
Engineering. Volume 2029 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 156–170

6. Buhr, R.J.A., Casselman, R.S.: Use case maps for object-oriented systems.
Prentice-Hall, Inc. (1996)

7. Buhr, R.J.A.: Use case maps as architectural entities for complex systems. IEEE
Transactions of Software Engineering 24 (1998) 1131–1155

8. Sanders, R.T., Bræk, R.: Modeling peer-to-peer service goals in uml. In: SEFM
’04: Proceedings of the Software Engineering and Formal Methods, Second Inter-
national Conference on (SEFM’04), IEEE Computer Society (2004) 144–153

9. Leue, S., Mehrmann, L., Rezai, M.: Synthesizing ROOM models from message
sequence chart specifications. Technical report, Dept. of Electrical and Computer
Engineering (1998)

10. Mansurov, N., Zhukov, D.: Automatic synthesis of SDL models in use case method-
ology. In Dssouli, R., von Bochmann, G., Lahav, Y., eds.: SDL Forum, Elsevier
(1999) 225–240

11. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: ICSE
’00: Proceedings of the 22nd international conference on Software engineering,
ACM Press (2000) 314–323



State-Machine Behaviour from UML Collaborations and Use Case Maps 357
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Appendix: Synthesis Algorithm

The algorithm presented here has not been tested thoroughly yet, so it may
contain some inconsistencies. The algorithm steps should therefore be taken as
guidelines, rather than as strict steps.

We present guidelines for a recursive algorithm. First, state-machines for
the inner-most stubs are synthesized. These are stubs whose plug-ins do not
contain other stubs. The state-machines are synthesized following steps 1 - 9
(see below). Once the state-machines for the inner-most stubs are synthesized,
the state-machines for their container UCMs, up to the composite UCM, can
be synthesized following steps again steps 1 - 9 (see below). Note that state-
machines are only synthesized for those UCMs whose start-point refers to one
of the collaborations in the Role Table.

The algorithm uses the following variables:

– currentRole: stores the name of the collaboration role we are dealing with.
– currentUCM : stores the name of the currently active collaboration
– currentRoleState[currentRole] : array that for each collaboration role stores

the name of the last automatons state added to the object’s state-machine.
Initialized to “start”.

– currentSMState[currentUCM] : array that for each collaboration/UCM stores
the name of the state where other states and transitions can be added.
Initialized to “start”.

– ucmsCurrentPoint[currentUCM] : array that for each UCM stores the last
processed element. Initialized to “start-point”.
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And it consists of the following 9 steps:
1. Set currentRole to the collaboration role that the object plays in the collab-

oration that the UCM/stub represents and currentUCM to that UCM/stub.
Go to step 2.

2. Traverse currentUCM ’s path, starting at ucmsCurrentPoint[currentUCM],
until a responsibility, a waiting place (either belonging to the path or tan-
gentially connected to it), an OR-fork, an end-point or a stub is found. If a
responsibility is found go to step 3. If a waiting place is found go to step 4.
If an OR-fork is found go to step 6. If an end-point is found go to step 8.
And if a stub is found go to step 9.

3. For the currentRole’s automaton, take the states and transitions between
(but not including) currentRoleState[currentRole] and the transition marked
with the responsibility’s event goal. Add these states and transitions, to-
gether with the event goal transition and its succeeding state, to the cur-
rentUCM ’s state-machine at currentSMState[currentUCM]. Update curren-
tRoleState[currentRole] and currentSMState[currentUCM], and set ucmsCur-
rentPoint[currentUCM] pointing to the just handled responsibility. Go to
step 2.

4. If the waiting place is tangentially connected to the path (i.e. other collabora-
tion is enabled), a search for a second waiting place, this time inserted in the
current path, is performed. If it is found, a partial goal dependency pattern
has been encountered. Go to step 5. If it is not found, or a new tangentially
connected waiting place is found, a sequential dependency pattern has been
encountered. The enabling collaboration and the enabled one run then con-
currently. A composite state with concurrent sub-states (or two orthogonal
regions in UML) should preferably be used to represent this behaviour. This
treatment is left as further work.

5. If the path between the first and the second waiting place is not empty
(i.e. any responsibility, stub or other element is found) both the enabling
and the enabled collaborations run concurrently for a while. At the time of
writing this paper we have not yet decided the best way of dealing with this
situation. This is left as further work.
Otherwise, if the path between the first and the second waiting place is
empty, set ucmsCurrentPoint[currentUCM] pointing to the second waiting
place and synthesize an automaton for the just enabled collaboration, ac-
cording to steps 1 - 9 (the automaton is not necessarily synthesized for the
whole collaboration, but maybe just for a part of the collaboration, which is
represented by a fragment of its UCM enclosed between two waiting places).
Add the synthesized automaton to the currentUCM ’s state-machine. To do
it, eliminate the start symbol of the automaton and merge each of its succeed-
ing states with a state of currentUCM ’s state-machine in the following way:
if the automaton state is labeled, merge it with a state of currentUCM ’s
state-machine with the same label; if the automaton state is not labeled,
merge it with the state pointed by currentSMState[currentUCM]. Update
currentSMState[currentUCM], so it points to the last added state which is
not labeled with any state goal or fail, and go to 2.
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6. Set ucmsCurrentPoint[currentUCM] pointing to the OR-fork. Check if cur-
rentRoleState[currentRole] precedes a choice. If so, go to 7. If not, traverse
the currentRole’s automaton, starting at currentRoleState[currentRole],
searching for a choice. If a choice is found, take the currentRole’s automa-
ton states and transitions between currentRoleState[currentRole] and the
state preceding the choice and add them (except the first state) to the
currentUCM ’s state-machine at currentSMState[currentUCM]. Update
currentSMState[currentUCM] and go to 7. If a choice is not found,
it means that the OR-fork describes aspects of other collaboration roles.
Take then all the currentRole’s automaton states and transitions from
currentRoleState[currentRole] and add them to the currentUCM ’s state-
machine at currentSMState[currentUCM]. The state-machine for
currentUCM is finished.

7. For each of the fork’s outgoing paths, synthesize an automaton according
to steps 1 - 9. Eliminate the start symbol and label the first state with the
guard condition of the path. If there is no guard condition, the state is not
labeled. Return to previous active step.

8. For the currentRole’s automaton, take all the states and transitions from
(and including) currentRoleState[currentRole] to the state marked with the
end-point’s goal/fail. Add these states and transitions to the currentUCM ’s
state-machine at currentSMState[currentUCM]. If there are no more paths
in the UCM, the state-machine for currentUCM is finished, otherwise return
to previous active step.

9. If the stub does not represent a collaboration in Role Table, bypass it and
go to step 2. Otherwise, add the stub’s state-machine (without the start
state) to the currentUCM ’s state-machine. If the stub is enabled by an event
goal (i.e a responsibility), the addition is done at the state succeeding the
transition marked with the event goal. If the stub is enabled by a state goal
(i.e. and end-point), the addition is done at the state marked with the state
goal. If the stub is enabled by a start-point labeled with a start label, the
addition is done at the currentUCM ’s state-machine start state. Go to step 2.
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